Dissecting gene x environmental effects on wheat yields via QTL and physiological analysis

Crops frequently display genotype x environment interaction for yield and end-use quality in response to different environments, particularly when stresses such as water limitation and temperature are components of the interaction. Plant breeders usually exploit this variation via phenotypic selecti...

Full description

Saved in:
Bibliographic Details
Published inEuphytica Vol. 154; no. 3; pp. 401 - 408
Main Authors Snape, John W, Foulkes, M. John, Simmonds, James, Leverington, Michelle, Fish, Lesley J, Wang, Yingkun, Ciavarrella, Matteo
Format Journal Article
LanguageEnglish
Published Dordrecht : Kluwer Academic Publishers 01.04.2007
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Crops frequently display genotype x environment interaction for yield and end-use quality in response to different environments, particularly when stresses such as water limitation and temperature are components of the interaction. Plant breeders usually exploit this variation via phenotypic selection to develop varieties with both general and specific adaptation. However the individual genes and physiological processes underlying the basis of general and specific adaptation have rarely been elucidated. We are combining large-scale QTL analysis of several doubled haploid populations of wheat, grown over different environments and seasons, with detailed physiological analysis, to dissect the genes and mechanisms responsible for yield and yield x environment variation in adapted European winter germplasm. Analysis of populations grown under irrigated and non-irrigated conditions on drought-prone soils has revealed individual genes showing stable and differential expression over environments, and the analysis has also identified physiological traits that contribute to differential yield performance. Genes on the homoeologous group 2 chromosomes were associated with flag leaf senescence (stay-green) variation and were the most significant in drought interactions. Variation for stem soluble carbohydrate reserves was associated with the 1RS arm of the 1BL/1RS translocated chromosome, and was positively correlated with yield under both irrigated and non-irrigated conditions, and thus general adaptability. Separate analyses of populations grown over three seasons in England, Scotland, France and Germany revealed QTL for yield performance showing both general and specific effects. A stable QTL on chromosome 6A, consistent in different populations, showed significant effects over seasons and environments, whilst other QTL were specific to season and/or environments.
Bibliography:http://dx.doi.org/10.1007/s10681-006-9208-2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0014-2336
1573-5060
DOI:10.1007/s10681-006-9208-2