Consequences of copper deficiency are not differentially influenced by carbohydrate source in young pigs fed a dried skim milk-based diet

Carbohydrates (CHO) such as fructose (FR) or sucrose, but not starch (ST), aggravate the consequences of dietary copper (Cu) deficiency in rats. To evaluate whether this Cu X CHO interaction is pertinent to human health, the pig was used as an animal model. In two studies, 66 weanling pigs were fed...

Full description

Saved in:
Bibliographic Details
Published inBiological trace element research Vol. 25; no. 1; p. 21
Main Authors Schoenemann, H.M. (USDA, ARS, Beltsville), Failla, M.L, Fields, M
Format Journal Article
LanguageEnglish
Published United States 01.04.1990
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:Carbohydrates (CHO) such as fructose (FR) or sucrose, but not starch (ST), aggravate the consequences of dietary copper (Cu) deficiency in rats. To evaluate whether this Cu X CHO interaction is pertinent to human health, the pig was used as an animal model. In two studies, 66 weanling pigs were fed dried skim milk (DSM)-based diets for 10 wk with 20% of the total calories provided as either FR, glucose, or ST and containing either deficient (1.0-1.3 micrograms/g diet) or adequate (7.1 micrograms/g) levels of Cu. Plasma and tissue levels of Cu, the activities of plasma ceruloplasmin ferroxidase and erythrocyte Cu, Zn-superoxide dismutase, and hematocrits were lower (p less than 0.05) in animals fed Cu-deficient diets. The relative cardiac mass of all Cu-deficient groups was greater (p less than 0.05) than that of animals fed Cu-adequate diets. These effects were in general unaffected by type of CHO. For comparison, weaned male rats were also fed DSM-based containing diets ST or FR with adequate or deficient Cu for as long as 10 wk. Rats consuming the Cu-deficient diets were characterized by significantly lower hematocrits, decreased tissue Cu levels, and enlarged hearts, regardless of the CHO source. Together, these data demonstrate that DSM-based diets are not suitable for delineation of potential Cu X CHO interactions, and one or more components of DSM may exacerbate the consequences of dietary Cu deficiency.
Bibliography:9046130
S30
ISSN:0163-4984
1559-0720
DOI:10.1007/BF02990260