YOLOv4를 이용한 CCTV 영상 내 군중 밀집도 분석 서비스 개발
본 논문에서는 2022년 10월 29일 한국에서 발생한 이태원 압사 사고를 기반으로 미래에 발생할 수 있는 인파 사고에 대하여 군중 밀집으로 인한 위험을 미리 예측하고, 예방하기 위한 목적으로 작성되었다. 단일 CCTV 같은 경우 관리자가 실시간으로 현재 상황을 판별할 수 있지만, 하루 종일 해당 화면만 들여다볼 수 없기 때문에 CCTV 화각으로 촬영된 영상들을 학습한 YOLO v4를 이용하여 객체를 탐지하고, 정해진 군집의 수가 초과하는 순간에 알림을 통해 군중 밀집으로 인한 안전사고를 예방하게 된다. YOLO v4 모델을 사용하...
Saved in:
Published in | The journal of the institute of internet, broadcasting and communication : JIIBC Vol. 24; no. 3; pp. 177 - 182 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | Korean |
Published |
한국인터넷방송통신학회
30.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | 본 논문에서는 2022년 10월 29일 한국에서 발생한 이태원 압사 사고를 기반으로 미래에 발생할 수 있는 인파 사고에 대하여 군중 밀집으로 인한 위험을 미리 예측하고, 예방하기 위한 목적으로 작성되었다. 단일 CCTV 같은 경우 관리자가 실시간으로 현재 상황을 판별할 수 있지만, 하루 종일 해당 화면만 들여다볼 수 없기 때문에 CCTV 화각으로 촬영된 영상들을 학습한 YOLO v4를 이용하여 객체를 탐지하고, 정해진 군집의 수가 초과하는 순간에 알림을 통해 군중 밀집으로 인한 안전사고를 예방하게 된다. YOLO v4 모델을 사용하게 된 이유는 이전 YOLO 모델보다 더욱 높은 정확 성과 빠른 속도로 개선되어, 객체 탐지 기법이 더 용이해졌기 때문이다. 본 서비스를 AI-Hub 사이트에 등재된 CCTV 영상 데이터로 테스트하는 과정을 거치게 된다. 현재 한국에 CCTV는 기하급수적으로 증가하였고, 이를 실제 CCTV에 적용한다면 앞으로 일어나게 될 군중 밀집으로 인한 사고를 비롯한 다양한 사고를 예방할 수 있을 것으로 기대한다. |
---|---|
Bibliography: | KISTI1.1003/JNL.JAKO202420062692410 |
ISSN: | 2289-0238 2289-0246 |