YOLOv4를 이용한 CCTV 영상 내 군중 밀집도 분석 서비스 개발

본 논문에서는 2022년 10월 29일 한국에서 발생한 이태원 압사 사고를 기반으로 미래에 발생할 수 있는 인파 사고에 대하여 군중 밀집으로 인한 위험을 미리 예측하고, 예방하기 위한 목적으로 작성되었다. 단일 CCTV 같은 경우 관리자가 실시간으로 현재 상황을 판별할 수 있지만, 하루 종일 해당 화면만 들여다볼 수 없기 때문에 CCTV 화각으로 촬영된 영상들을 학습한 YOLO v4를 이용하여 객체를 탐지하고, 정해진 군집의 수가 초과하는 순간에 알림을 통해 군중 밀집으로 인한 안전사고를 예방하게 된다. YOLO v4 모델을 사용하...

Full description

Saved in:
Bibliographic Details
Published inThe journal of the institute of internet, broadcasting and communication : JIIBC Vol. 24; no. 3; pp. 177 - 182
Main Authors 황승연, 김정준
Format Journal Article
LanguageKorean
Published 한국인터넷방송통신학회 30.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:본 논문에서는 2022년 10월 29일 한국에서 발생한 이태원 압사 사고를 기반으로 미래에 발생할 수 있는 인파 사고에 대하여 군중 밀집으로 인한 위험을 미리 예측하고, 예방하기 위한 목적으로 작성되었다. 단일 CCTV 같은 경우 관리자가 실시간으로 현재 상황을 판별할 수 있지만, 하루 종일 해당 화면만 들여다볼 수 없기 때문에 CCTV 화각으로 촬영된 영상들을 학습한 YOLO v4를 이용하여 객체를 탐지하고, 정해진 군집의 수가 초과하는 순간에 알림을 통해 군중 밀집으로 인한 안전사고를 예방하게 된다. YOLO v4 모델을 사용하게 된 이유는 이전 YOLO 모델보다 더욱 높은 정확 성과 빠른 속도로 개선되어, 객체 탐지 기법이 더 용이해졌기 때문이다. 본 서비스를 AI-Hub 사이트에 등재된 CCTV 영상 데이터로 테스트하는 과정을 거치게 된다. 현재 한국에 CCTV는 기하급수적으로 증가하였고, 이를 실제 CCTV에 적용한다면 앞으로 일어나게 될 군중 밀집으로 인한 사고를 비롯한 다양한 사고를 예방할 수 있을 것으로 기대한다.
Bibliography:KISTI1.1003/JNL.JAKO202420062692410
ISSN:2289-0238
2289-0246