Novel Sites of Adrenomedullin Gene Expression in Mouse and Rat Tissues1

Adrenomedullin (AM) was originally identified in pheochromocytoma tissue and was characterized as a hypotensive peptide. The tissue distribution and cellular localization of AM messenger RNA (mRNA) were determined in mouse and rat tissues by in situ hybridization. Three probes were used: two nonover...

Full description

Saved in:
Bibliographic Details
Published inEndocrinology (Philadelphia) Vol. 139; no. 5; pp. 2253 - 2264
Main Authors Cameron, Vicky A, Fleming, Angela M
Format Journal Article
LanguageEnglish
Published Endocrine Society 01.05.1998
Online AccessGet full text

Cover

Loading…
More Information
Summary:Adrenomedullin (AM) was originally identified in pheochromocytoma tissue and was characterized as a hypotensive peptide. The tissue distribution and cellular localization of AM messenger RNA (mRNA) were determined in mouse and rat tissues by in situ hybridization. Three probes were used: two nonoverlapping probes to the pro-AM N-terminal 20 peptide (PAMP) and AM peptide regions of mouse pro-AM, and a larger complementary DNA (cDNA) probe spanning both the PAMP- and AM peptide-coding regions. The most intense expression of AM mRNA was in endometrium and epithelial cells lining the uterus and mouse adrenal medulla. Moderate levels of expression were detected in kidney glomerulus and cortical distal tubules, ovarian corpus luteum and follicles, epithelial cells lining the bronchioles, cardiac atrium and ventricle, posterior pituitary (particularly in female rats), stomach, small intestine (microvilli, mucosa and submucosa), spleen, and pancreas. Lower levels were observed in pulmonary alveoli, anterior pituitary, and submandibular gland. No expression was detected in the testis, thymus, skeletal muscle, or liver. The localization of AM mRNA in epithelial cells lining the uterus, bronchioles, and gastrointestinal tract indicates novel roles for AM, possibly as an antimicrobial agent. The strong expression of AM in uterus, ovary, and posterior pituitary suggests that AM plays a role in female reproduction.
ISSN:0013-7227
1945-7170
DOI:10.1210/endo.139.5.5965