얼굴 영역 추출 시 여유값의 설정에 따른 개성 인식 모델 정확도 성능 분석

최근 개인의 성향을 반영한 맞춤형 서비스가 각광 받고 있다. 이와 관련하여 개인의 개성을 인식하고 활용하고자 하는 연구가 지속적으로 이루어지고 있다. 각 개인의 개성을 인식하고 평가하는 방법은 다수가 있지만, OCEAN 모델이 대표적으로 사용된다. OCEAN 모델로 각 개인의 개성을 인식할 때 언어적, 준언어적, 비언어적 정보를 이용하는 멀티 모달리티 기반 인공지능 모델이 사용될 수 있다. 본 논문에서는 비언어적 정보인 사용자의 표정을 기반으로 OCEAN을 인식하는 인공지능 모델에서 영상 데이터에서 얼굴 영역을 추출할 때 지정하는...

Full description

Saved in:
Bibliographic Details
Published inThe journal of the institute of internet, broadcasting and communication : JIIBC Vol. 24; no. 1; pp. 141 - 147
Main Authors 구욱, 한규원, 김봉재
Format Journal Article
LanguageKorean
Published 한국인터넷방송통신학회 29.02.2024
Subjects
Online AccessGet full text
ISSN2289-0238
2289-0246
DOI10.7236/JIIBC.2024.24.1.141

Cover

More Information
Summary:최근 개인의 성향을 반영한 맞춤형 서비스가 각광 받고 있다. 이와 관련하여 개인의 개성을 인식하고 활용하고자 하는 연구가 지속적으로 이루어지고 있다. 각 개인의 개성을 인식하고 평가하는 방법은 다수가 있지만, OCEAN 모델이 대표적으로 사용된다. OCEAN 모델로 각 개인의 개성을 인식할 때 언어적, 준언어적, 비언어적 정보를 이용하는 멀티 모달리티 기반 인공지능 모델이 사용될 수 있다. 본 논문에서는 비언어적 정보인 사용자의 표정을 기반으로 OCEAN을 인식하는 인공지능 모델에서 영상 데이터에서 얼굴 영역을 추출할 때 지정하는 얼굴 영역 여유값(Margin)에 따른 개성 인식 모델 정확도 성능을 분석한다. 실험에서는 2D Patch Partition, R2plus1D, 3D Patch Partition, 그리고 Video Swin Transformer에 기반한 개성 인식 모델을 사용하였다. 얼굴 영역 추출 시 여유값을 60으로 사용했을 때 1-MAE 성능이 0.9118로 가장 우수하였다. 따라서 개성 인식 모델의 성능을 최적화하기 위해서는 적절한 여유값을 설정해야 함을 확인하였다.
Bibliography:KISTI1.1003/JNL.JAKO202408557644188
ISSN:2289-0238
2289-0246
DOI:10.7236/JIIBC.2024.24.1.141