통합 평가치 예측 방안의 협력 필터링 성능 개선 효과
협력 필터링 기반의 추천 시스템은 사용자들의 평가 이력을 바탕으로 하여 현 사용자가 선호할 만한 상품들을 추천해 주며 현재 다양한 상업용 목적의 필수불가결한 기능이다. 추천 상품을 결정하기 위하여, 유사한 평가 이력을 기반 으로 미평가 상품들에 대한 선호 예측치를 산출하는데, 기존 연구에서 대개 두 가지 방법, 즉, 유사 사용자 기반 또는 유사 항목 기반 방법을 각기 개별적으로 활용해 왔다. 이들 방법들은 사용자들의 평가 데이터가 희소할 경우 또는 유사 사용자나 유사 항목을 구하기 어려울 경우에 산출한 예측치의 정확성이 저하되는 문...
Saved in:
Published in | The journal of the institute of internet, broadcasting and communication : JIIBC Vol. 21; no. 5; pp. 221 - 226 |
---|---|
Main Author | |
Format | Journal Article |
Language | Korean |
Published |
한국인터넷방송통신학회
31.10.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2289-0238 2289-0246 |
DOI | 10.7236/JIIBC.2021.21.5.221 |
Cover
Summary: | 협력 필터링 기반의 추천 시스템은 사용자들의 평가 이력을 바탕으로 하여 현 사용자가 선호할 만한 상품들을 추천해 주며 현재 다양한 상업용 목적의 필수불가결한 기능이다. 추천 상품을 결정하기 위하여, 유사한 평가 이력을 기반 으로 미평가 상품들에 대한 선호 예측치를 산출하는데, 기존 연구에서 대개 두 가지 방법, 즉, 유사 사용자 기반 또는 유사 항목 기반 방법을 각기 개별적으로 활용해 왔다. 이들 방법들은 사용자들의 평가 데이터가 희소할 경우 또는 유사 사용자나 유사 항목을 구하기 어려울 경우에 산출한 예측치의 정확성이 저하되는 문제점이 있다. 본 연구에서는 이들 두가지 방법을 통합하여 평가치를 예측하는 새로운 방법을 제안한다. 제안 방법의 장점은 보다 많은 수의 유사 평가치들 을 참조할 수 있으므로 추천의 질이 향상된다는 점이다. 성능 실험 결과 제안 방법은 희소한 데이터셋에서 예측치 정확 도, 추천 항목 적합도, 항목 순위 적합도의 모든 측면에서 기존 방법의 성능을 크게 향상시켰으며, 다소 밀집한 데이터셋 에서는 예측치 정확도 측면에서는 가장 우수하고, 다른 평가 척도에서는 기존 방법과 대등한 결과를 보였다. |
---|---|
Bibliography: | KISTI1.1003/JNL.JAKO202130760006668 |
ISSN: | 2289-0238 2289-0246 |
DOI: | 10.7236/JIIBC.2021.21.5.221 |