Microbiota-Modulated Metabolites Shape the Intestinal Microenvironment by Regulating NLRP6 Inflammasome Signaling
Host-microbiome co-evolution drives homeostasis and disease susceptibility, yet regulatory principles governing the integrated intestinal host-commensal microenvironment remain obscure. While inflammasome signaling participates in these interactions, its activators and microbiome-modulating mechanis...
Saved in:
Published in | Cell Vol. 163; no. 6; pp. 1428 - 1443 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
03.12.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Host-microbiome co-evolution drives homeostasis and disease susceptibility, yet regulatory principles governing the integrated intestinal host-commensal microenvironment remain obscure. While inflammasome signaling participates in these interactions, its activators and microbiome-modulating mechanisms are unknown. Here, we demonstrate that the microbiota-associated metabolites taurine, histamine, and spermine shape the host-microbiome interface by co-modulating NLRP6 inflammasome signaling, epithelial IL-18 secretion, and downstream anti-microbial peptide (AMP) profiles. Distortion of this balanced AMP landscape by inflammasome deficiency drives dysbiosis development. Upon fecal transfer, colitis-inducing microbiota hijacks this microenvironment-orchestrating machinery through metabolite-mediated inflammasome suppression, leading to distorted AMP balance favoring its preferential colonization. Restoration of the metabolite-inflammasome-AMP axis reinstates a normal microbiota and ameliorates colitis. Together, we identify microbial modulators of the NLRP6 inflammasome and highlight mechanisms by which microbiome-host interactions cooperatively drive microbial community stability through metabolite-mediated innate immune modulation. Therefore, targeted “postbiotic” metabolomic intervention may restore a normal microenvironment as treatment or prevention of dysbiosis-driven diseases.
[Display omitted]
•Microbiota-modulated metabolites regulate NLRP6 inflammasome and intestinal IL-18•Inflammasome-derived IL-18 orchestrates colonic anti-microbial peptide expression•Inflammasome modulation by metabolites enables dysbiotic community transfer•Integrated metabolite signaling determines the severity of intestinal inflammation
Microbiota-associated metabolites shape the host-microbiome interface by modulating NLRP6 inflammasome signaling, epithelial IL-18 secretion, and the generation of downstream anti-microbial peptides. This axis, therefore, determines both host indigenous microbiome profiles and the susceptibility to intestinal inflammation. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These first authors contributed equally to this work These corresponding authors contributed equally to this work |
ISSN: | 0092-8674 1097-4172 1097-4172 |
DOI: | 10.1016/j.cell.2015.10.048 |