Immunohistochemical characterization of Toll-like receptor 2 in gut epithelial cells and macrophages of goldfish Carassius auratus fed with a high-cholesterol diet
Toll-like receptors (TLRs) are a group of pattern recognition molecules that play a crucial role in innate immunity. The structural conservation of the archaic TLR system suggests that the regulation of the immune response might be similar in fish and mammals. Several TLRs (TLR-1, -2, and -4) are ex...
Saved in:
Published in | Fish & shellfish immunology Vol. 59; pp. 250 - 255 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.12.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Toll-like receptors (TLRs) are a group of pattern recognition molecules that play a crucial role in innate immunity. The structural conservation of the archaic TLR system suggests that the regulation of the immune response might be similar in fish and mammals. Several TLRs (TLR-1, -2, and -4) are expressed by activated macrophages, “foam cells” in human atherosclerotic lesions. To date, 20 different TLRs were identified in more than a dozen different fish species. In this study we found that feeding goldfish, Carrassius auratus, a high-cholesterol diet (HCD) resulted macrophage foam cell formation in the intestinal tissues. The expression of TLR2 has been found in foam cells and in the cytoplasm of enterocytes, however the staining was more intense at the apical surface of polarized intestinal epithelial cells and in the lamina propria. In the intestinal epithelial cells and in the lamina propria cells of the control fish the TLR2 was expressed at low levels. The intestinal epithelium is directly involved in the mucosal immune response through its expression of proinflammatory genes, release of inflammatory cytokines, and recruitment of inflammatory cells.
•Characterization of Toll-like receptor 2 in goldfish intestine.•TLR2 contributes to the pathogenesis of atherosclerosis by “foam cell” formation.•First report on the goldfish as model for study of atherogenesis. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1050-4648 1095-9947 |
DOI: | 10.1016/j.fsi.2016.11.003 |