Characterisation of theophylline metabolism by human liver microsomes. Inhibition and immunochemical studies

Anti-human NADPH-cytochrome P-450 reductase inhibited all theophylline metabolic pathways confirming the involvement of cytochrome P-450 isozymes in the metabolism of theophylline. Tolbutamide, debrisoquine, mephenytoin, theobromine, phenylbutazone, sulphaphenazole and sulphinpyrazone did not inhibi...

Full description

Saved in:
Bibliographic Details
Published inBiochemical pharmacology Vol. 37; no. 9; p. 1651
Main Authors Robson, R A, Miners, J O, Matthews, A P, Stupans, I, Meller, D, McManus, M E, Birkett, D J
Format Journal Article
LanguageEnglish
Published England 01.05.1988
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:Anti-human NADPH-cytochrome P-450 reductase inhibited all theophylline metabolic pathways confirming the involvement of cytochrome P-450 isozymes in the metabolism of theophylline. Tolbutamide, debrisoquine, mephenytoin, theobromine, phenylbutazone, sulphaphenazole and sulphinpyrazone did not inhibit theophylline metabolism by human liver microsomes. Verapamil and dextropropoxyphene were non-selective competitive inhibitors of theophylline metabolism. Cimetidine and caffeine selectively inhibited the two demethylations as Ki values for these two pathways were lower than for the 8-hydroxylation pathway. The effects of nifedipine, propranolol and alpha-naphthoflavone were atypical. The degree of inhibition by propranolol reached a plateau, which was greater for the two demethylations than for the 8-hydroxylation. Alpha-naphthoflavone (ANF) at low concentrations inhibited the demethylations to a greater extent than the 8-hydroxylation. At higher concentrations ANF activated all pathways, with this effect being most marked for the 8-hydroxylation. Nifedipine inhibited the theophylline demethylations but not the 8-hydroxylation. In some livers the 8-hydroxylation was markedly activated. The results confirm that there are at least two distinct cytochrome P-450 isozymes involved in theophylline metabolism, one isozyme being involved with the demethylations and a different isozyme involved in the 8-hydroxylation pathway. Preliminary correlation studies suggest that the human orthologue to the rabbit polycyclic hydrocarbon inducible P-450 Form 4 may be involved in the N-demethylations of theophylline.
ISSN:0006-2952
DOI:10.1016/0006-2952(88)90423-6