Crystal structure of the stromelysin-3 (MMP-11) catalytic domain complexed with a phosphinic inhibitor mimicking the transition-state

Stromelysin-3 (ST3) is a matrix metalloproteinase (MMP-11) whose proteolytic activity plays an important role in tumorigenicity enhancement. In breast cancer, ST3 is a bad prognosis marker: its expression is associated with a poor clinical outcome. This enzyme therefore represents an attractive ther...

Full description

Saved in:
Bibliographic Details
Published inJournal of molecular biology Vol. 307; no. 2; pp. 577 - 586
Main Authors Gall, Anne-Laure, Ruff, Marc, Kannan, Rama, Cuniasse, Philippe, Yiotakis, Athanasios, Dive, Vincent, Rio, Marie-Christine, Basset, Paul, Moras, Dino
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 23.03.2001
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Stromelysin-3 (ST3) is a matrix metalloproteinase (MMP-11) whose proteolytic activity plays an important role in tumorigenicity enhancement. In breast cancer, ST3 is a bad prognosis marker: its expression is associated with a poor clinical outcome. This enzyme therefore represents an attractive therapeutic target. The topology of matrix metalloproteinases (MMPs) is remarkably well conserved, making the design of highly specific inhibitors difficult. The major difference between MMPs lies in the S1′ subsite, a well-defined hydrophobic pocket of variable depth. The present crystal structure, the first 3D-structure of the ST3 catalytic domain in interaction with a phosphinic inhibitor mimicking a (d, l) peptide, clearly demonstrates that its S1′ pocket corresponds to a tunnel running through the enzyme. This open channel is filled by the inhibitor P1′ group which adopts a constrained conformation to fit this pocket, together with two water molecules interacting with the ST3-specific residue Gln215. These observations provide clues for the design of more specific inhibitors and show how ST3 can accommodate a phosphinic inhibitor mimicking a (d, l) peptide. The presence of a water molecule interacting with one oxygen atom of the inhibitor phosphinyl group and the proline residue of the Met-turn suggests how the intermediate formed during proteolysis may be stabilized. Furthermore, the hydrogen bond distance observed between the methyl of the phosphinic group and the carbonyl group of Ala182 mimics the interaction between this carbonyl group and the amide group of the cleaved peptidic bond. Our crystal structure provides a good model to study the MMPs mechanism of proteolysis.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-2836
1089-8638
DOI:10.1006/jmbi.2001.4493