Preparation of C 60 single crystalline thin film by ionized cluster beam deposition and ion implantation into single crystalline C 60 thin film

We have succeeded in preparing single crystalline C 60 thin film of a lateral extension in the order of several millimeters on mica by ionized cluster beam (ICB) deposition. During the growth process, planar dendrite-like single crystalline islands were observed by an atomic force microscope (AFM)....

Full description

Saved in:
Bibliographic Details
Published inNuclear instruments & methods in physics research. Section B, Beam interactions with materials and atoms Vol. 112; no. 1; pp. 94 - 98
Main Authors Isoda, Satoru, Kawakubo, Hiroaki, Nishikawa, Satoshi, Wada, Osamu
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.1996
Online AccessGet full text

Cover

Loading…
More Information
Summary:We have succeeded in preparing single crystalline C 60 thin film of a lateral extension in the order of several millimeters on mica by ionized cluster beam (ICB) deposition. During the growth process, planar dendrite-like single crystalline islands were observed by an atomic force microscope (AFM). It was concluded from reflection high-energy electron diffraction (RHEED) and transmission electron diffraction (TED) analyses that these islands grow hetero-epitaxially on mica. As the deposition process continues, the single crystalline islands coalesce and finally form a giant single crystal without grain boundaries between the former islands. This layered dendrite-like crystal growth is considered to be due to the ICB process, namely, ionizing molecules and accelerating them. Furthermore, the effect of ion (P +, B +, Ar +) implantation into C 60 thin films on the molecular structure and the conductivity has been studied under various implantation conditions. It was found from the analyses of FT-IR and Raman spectroscopies that the soccer-ball-like structure of C 60 changes into a diamond-like carbon (DLC) structure with an implantation energy higher than 40 keV, whereas the structure undergoes virtually no change with 10 keV implantation. As for conductivity changes under the lower implantation energy condition, the minimum dose of P + ions required to increase the conductivity from the non-doped value (10 12 cm −2) is 10 times lower than in the case of Ar + implantation. The conductivity change for the P + implantation could be explained satisfactorily not only by the effect of chemically-modified C 60 but also by the effect of a charge-transfer state between C 60 and implanted ions. It was concluded from these results that the conductivity of the C 60 film can be controlled over a wide range based on the carrier generation mechanism, which depends on the implantation conditions.
ISSN:0168-583X
1872-9584
DOI:10.1016/0168-583X(95)01233-8