Réarrangement relatif dans les équations elliptiques quasi-linéaires avec un second membre distribution: Application à un théorème d'existence et de régularité

In this paper we are concerned with quasilinear elliptic equations, that is ( P ) Au + F( u,▽ u) = T in Ω ⊂ R , u ϵ W 0 1, p(Ω) ∩ L ∞(Ω) ; where A is an operator of Leray-Lions type which is defined on W 0 1 p(Ω) ∩ L ∞(Ω) (1 <p < +∞) , F is a non-linear map having a suitable growth, and T is a...

Full description

Saved in:
Bibliographic Details
Published inJournal of Differential Equations Vol. 66; no. 3; pp. 391 - 419
Main Author Rakotoson, Jean-Michel
Format Journal Article
LanguageFrench
Published Elsevier Inc 15.03.1987
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper we are concerned with quasilinear elliptic equations, that is ( P ) Au + F( u,▽ u) = T in Ω ⊂ R , u ϵ W 0 1, p(Ω) ∩ L ∞(Ω) ; where A is an operator of Leray-Lions type which is defined on W 0 1 p(Ω) ∩ L ∞(Ω) (1 <p < +∞) , F is a non-linear map having a suitable growth, and T is a distribution of W −1,r(Ω), r > N (p − 1) and r + ̆ p (p − 1) . Using the techniques of the relative rearrangement ( Ann. Scuola Norm. Sup. Pisa Cl Sci ( 4), in press), we give a precise a priori estimate of the solution u of ( P ) in L ∞-norm. These estimates allow us to prove an existence theorem for ( P ) and to get the Hölder continuity of the solution u
ISSN:0022-0396
1090-2732
DOI:10.1016/0022-0396(87)90026-X