基于改进高斯混合模型的变电站负荷聚类算法

TM714; 针对传统高斯混合模型(Gaussian mixture model,GMM)聚类算法中计算复杂、收敛速度慢和人为确定聚类数目时存在盲目性和主观性等不足,提出了一种基于改进GMM的变电站负荷聚类算法.以传统GMM聚类算法为基础,采用k均值(k-means)算法确定初始聚类中心.减少了GMM聚类算法迭代步骤,提高了输出结果的稳定性.输出不同聚类数下聚类结果的Davies-Bouldin(DB)指标、Calinski-Harabasz(CH)指标和轮廓系数(silhouette coefficient,SC),应用熵权法确定不同评价指标所占权重,构建聚类评价混合指数(cluster e...

Full description

Saved in:
Bibliographic Details
Published in全球能源互联网 Vol. 7; no. 5; pp. 591 - 601
Main Authors 余浩, 高镱滈, 潘险险, 徐衍会, 李雪松, 孙宇航
Format Journal Article
LanguageChinese
Published 广东电网有限责任公司电网规划研究中心,广东省 广州市 510030%华北电力大学电气与电子工程学院,北京市 昌平区 102206 01.09.2024
Editorial Office of Journal of Global Energy Interconnection
Subjects
Online AccessGet full text
ISSN2096-5125
DOI10.19705/j.cnki.issn2096-5125.2024.05.012

Cover

More Information
Summary:TM714; 针对传统高斯混合模型(Gaussian mixture model,GMM)聚类算法中计算复杂、收敛速度慢和人为确定聚类数目时存在盲目性和主观性等不足,提出了一种基于改进GMM的变电站负荷聚类算法.以传统GMM聚类算法为基础,采用k均值(k-means)算法确定初始聚类中心.减少了GMM聚类算法迭代步骤,提高了输出结果的稳定性.输出不同聚类数下聚类结果的Davies-Bouldin(DB)指标、Calinski-Harabasz(CH)指标和轮廓系数(silhouette coefficient,SC),应用熵权法确定不同评价指标所占权重,构建聚类评价混合指数(cluster evaluation mixed index,CEM).将聚类评价混合指数最大值对应的聚类个数作为最佳聚类数目,再次输入到改进GMM聚类算法中,得到变电站负荷聚类结果和聚类中心.结果表明,所提方法增强了传统GMM聚类算法的计算速度和稳定性,对变电站负荷具有良好的聚类综合能力,有助于实现聚类结果最优化.
ISSN:2096-5125
DOI:10.19705/j.cnki.issn2096-5125.2024.05.012