Variational Continuous Bayesian Meta-learning Based Algorithm for Recommendation
Meta-learning methods have been introduced into recommendation algorithms in recent years to alleviate the problem of cold start.The existing meta-learning algorithms can only improve the ability of the algorithm to deal with a set of statically distributed data sets(tasks).When faced with multiple...
Saved in:
Published in | Ji suan ji ke xue Vol. 50; no. 7; pp. 66 - 71 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | Chinese |
Published |
Chongqing
Guojia Kexue Jishu Bu
01.07.2023
Editorial office of Computer Science |
Subjects | |
Online Access | Get full text |
ISSN | 1002-137X |
DOI | 10.11896/jsjkx.220900125 |
Cover
Summary: | Meta-learning methods have been introduced into recommendation algorithms in recent years to alleviate the problem of cold start.The existing meta-learning algorithms can only improve the ability of the algorithm to deal with a set of statically distributed data sets(tasks).When faced with multiple data sets subject to non-stationary distribution, the existing models often have negative knowledge transfer and catastrophic forgetting problems, resulting in a significant decline in algorithm recommendation performance.This paper explores a recommendation algorithm based on variational continuous Bayesian Meta-learning(VC-BML).Firstly, the algorithm assumes that the meta parameters follow the dynamic mixed Gaussian model, which makes it have a larger parameter space, improves the ability of the model to adapt to different tasks, and alleviates the problem of negative knowledge transfer.Then, the number of task clusters in VC-BML is flexibly determined by Chinese restaurant process(CRP),which enables the model to |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1002-137X |
DOI: | 10.11896/jsjkx.220900125 |