Comparison of the efficacy of seven non-surgical methods combined with mechanical debridement in peri-implantitis and peri-implant mucositis: A network meta-analysis

This network meta-analysis aims to compare the clinical efficacy of seven non-surgical therapies for peri-implant disease, including laser treatment, photobiomodulation therapy (PBMT), photodynamic therapy (PDT), systemic antibiotics (SA), probiotics, local antimicrobials (LA), and air-powder polish...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 19; no. 8; p. e0305342
Main Authors Bai, Yingjie, Qin, Shengao, Lu, Bingshuai, Wang, Weiyi, Ma, Guowu
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 14.08.2024
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This network meta-analysis aims to compare the clinical efficacy of seven non-surgical therapies for peri-implant disease, including laser treatment, photobiomodulation therapy (PBMT), photodynamic therapy (PDT), systemic antibiotics (SA), probiotics, local antimicrobials (LA), and air-powder polishing (APP) combined with mechanical debridement (MD). We conducted searches in four electronic databases, namely PubMed, Embase, Web of Science, and The Cochrane Library, to identify randomized controlled trials of non-surgical treatments combined with MD for individuals (aged at least 18 years) diagnosed with peri-implantitis or peri-implant mucositis with a minimum of 3 months follow-up. The outcomes of the study were the reduction in pocket probing depth (PPD) and bleeding on probing (BoP), plaque index (PLI), clinical attachment level (CAL), and marginal bone loss (MBL). We employed a frequency random effects network meta-analysis model to combine the effect sizes of the trials using standardized mean difference (SMD) and 95% confidence intervals (CIs). Network meta-analyses include network plots, paired comparison forest plots, league tables, funnel plots, surface under the cumulative ranking area (SUCRA) plots, and sensitivity analysis plots. The results showed that, for peri-implantitis, PBMT +MD demonstrated the highest effect in improving PPD (SUCRA = 75.3%), SA +MD showed the highest effect in improving CAL (SUCRA = 87.4%, SMD = 2.20, and 95% CI: 0.38 to 4.02) and MBL (SUCRA = 99.9%, SMD = 3.92, and 95% CI. 2.90 to 4.93), compared to MD alone. For peri-implant mucositis, probiotics +MD demonstrated the highest effect in improving PPD (SUCRA = 100%) and PLI (SUCRA = 83.2%), SA +MD showed the highest effect in improving BoP (SUCRA = 88.1%, SMD = 0.77, and 95% CI: 0.27 to 1.28), compared to MD alone. Despite the ranking established by our study in the treatment of peri-implant disease, decisions should still be made with reference to the latest treatment guidelines. There is still a need for more high-quality studies to provide conclusive evidence and especially a need for studies regarding direct comparisons between multiple treatment options.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0305342