Genetic regulation of TERT splicing affects cancer risk by altering cellular longevity and replicative potential
The chromosome 5p15.33 region, which encodes telomerase reverse transcriptase (TERT), harbors multiple germline variants identified by genome-wide association studies (GWAS) as risk for some cancers but protective for others. Here, we characterize a variable number tandem repeat within TERT intron 6...
Saved in:
Published in | Nature communications Vol. 16; no. 1; pp. 1676 - 20 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
16.02.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The chromosome 5p15.33 region, which encodes telomerase reverse transcriptase (TERT), harbors multiple germline variants identified by genome-wide association studies (GWAS) as risk for some cancers but protective for others. Here, we characterize a variable number tandem repeat within
TERT
intron 6, VNTR6-1 (38-bp repeat unit), and detect a strong link between VNTR6-1 alleles (Short: 24-27 repeats, Long: 40.5-66.5 repeats) and GWAS signals rs2242652 and rs10069690 within
TERT
intron 4. Bioinformatics analyses reveal that rs10069690-T allele increases intron 4 retention while VNTR6-1-Long allele expands a polymorphic G-quadruplex (G4, 35-113 copies) within intron 6, with both variants contributing to variable
TERT
expression through alternative splicing and nonsense-mediated decay. In two cell lines, CRISPR/Cas9 deletion of VNTR6-1 increases the ratio of
TERT-
full-length (FL) to the alternative
TERT-β
isoform, promoting apoptosis and reducing cell proliferation. In contrast, treatment with G4-stabilizing ligands shifts splicing from
TERT-FL
to
TERT-β
isoform, implicating VNTR6-1 as a splicing switch. We associate the functional variants VNTR6-1, rs10069690, and their haplotypes with multi-cancer risk and age-related telomere shortening. By regulating
TERT
splicing, these variants may contribute to fine-tuning cellular longevity and replicative potential in the context of stress due to tissue-specific endogenous and exogenous exposures, thereby influencing the cancer risk conferred by this locus.
Several multi-cancer GWAS loci within the region encoding telomerase reverse transcriptase (TERT) have been identified. Here, the authors explore the locus within TERT intron 4, link it with a variable number tandem repeat (VNTR), and investigate its biological significance and role in cancer. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-025-56947-y |