The effects of normobaric and hyperbaric oxygenation on MRI signal intensities in T1-weighted, T2-weighted and FLAIR images in human brain

Dissolved oxygen has known paramagnetic effects in magnetic resonance imaging (MRI). The aim of this study was to compare the effects of normobaric oxygenation (NBO) and hyperbaric oxygenation (HBO) on human brain MRI signal intensities.Baseline brain MRI was performed in 17 healthy subjects (mean a...

Full description

Saved in:
Bibliographic Details
Published inRadiology and oncology Vol. 57; no. 3; pp. 317 - 324
Main Authors Velej, Vida, Cankar, Ksenija, Vidmar, Jernej
Format Journal Article
LanguageEnglish
Published Ljubljana Sciendo 01.09.2023
De Gruyter Poland
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Dissolved oxygen has known paramagnetic effects in magnetic resonance imaging (MRI). The aim of this study was to compare the effects of normobaric oxygenation (NBO) and hyperbaric oxygenation (HBO) on human brain MRI signal intensities.Baseline brain MRI was performed in 17 healthy subjects (mean age 27.8 ± 3.2). MRI was repeated after exposure to the NBO and HBO at different time points (0 min, 25 min, 50 min). Signal intensities in T1-weighted, T2-weighted images and fluid attenuated inversion recovery (FLAIR) signal intensities of several intracranial structures were compared between NBO and HBO.Increased T1-weighted signal intensities were observed in white and deep grey brain matter, cerebrospinal fluid (CSF), venous blood and vitreous body after exposure to NBO as well as to HBO compared to baseline (Dunnett's test, p < 0.05) without significant differences between both protocols. There was also no significant difference in T2-weighted signal intensities between NBO and HBO. FLAIR signal intensities were increased only in the vitreous body after NBO and HBO and FLAIR signal of caudate nucleus was decreased after NBO (Dunnett's test, p < 0.05). The statistically significant differences in FLAIR signal intensities were found between NBO and HBO (paired t-test, p < 0.05) in most observed brain structures (paired t-test, p < 0.05).Our results show that NBO and HBO alters signal intensities T1-weighted and FLAIR images of human brain. The differences between NBO and HBO are most pronounced in FLAIR imaging.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1318-2099
1581-3207
1581-3207
0485-893X
DOI:10.2478/raon-2023-0043