Exosomal microRNA-32-5p induces multidrug resistance in hepatocellular carcinoma via the PI3K/Akt pathway

Multidrug resistance is the main obstacle for hepatocellular carcinoma (HCC) treatment. miR-32-5p is involved in HCC progression but its function in multidrug resistance is still unclear. Here we aim to find out the function of miR-32-5p in inducing multidrug resistance and its underlying mechanisms...

Full description

Saved in:
Bibliographic Details
Published inJournal of experimental & clinical cancer research Vol. 37; no. 1; pp. 52 - 18
Main Authors Fu, Xiao, Liu, Mengjie, Qu, Shengyang, Ma, Jiequn, Zhang, Yamin, Shi, Tingting, Wen, Hongqing, Yang, Yujuan, Wang, Shuhong, Wang, Jing, Nan, Kejun, Yao, Yu, Tian, Tao
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 12.03.2018
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Multidrug resistance is the main obstacle for hepatocellular carcinoma (HCC) treatment. miR-32-5p is involved in HCC progression but its function in multidrug resistance is still unclear. Here we aim to find out the function of miR-32-5p in inducing multidrug resistance and its underlying mechanisms of transforming sensitive cell to resistant cell. We detected the expression of miR-32-5p and PTEN in the multidrug-resistant cell line (Bel/5-FU) and the sensitive cell line (Bel7402), HCC and para-carcinoma liver tissues through real-time PCR. Dual-luciferase reporter assay verified PTEN is the target of miR-32-5p. Exosomes from sensitive and multidrug resistant cell line were obtained and confirmed through ultracentrifuge and Nano Analyzer. Gain- and loss-of-function experiments, rescue experiments, a PI3K/Akt pathway inhibitor, an exosome biogenesis inhibitor, and nude mice xenograft models were used to determine the underlying mechanisms of miR-32-5p and PTEN, as well as exosomal miR-32-5p in inducing multidrug resistance in vitro and in vivo. miR-32-5p was significantly elevated but PTEN was reduced in Bel/5-FU. An inverse correlation between miR-32-5p and PTEN was confirmed in HCC cell lines and patients; moreover, high expression of miR-32-5p and low expression of PTEN were positively associated with poor prognosis. Over-expression of miR-32-5p activated the PI3K/Akt pathway by suppressing PTEN and induced multidrug resistance via exosomes through promoting angiogenesis and epithelial-mesenchymal transition (EMT). Our study demonstrated that the multidrug-resistant cell, Bel/5-FU delivers miR-32-5p to sensitive cell, Bel7402 by exosomes and activates the PI3K/Akt pathway to further induce multidrug resistance by modulating angiogenesis and EMT.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Correction/Retraction-3
ISSN:0392-9078
1756-9966
1756-9966
DOI:10.1186/s13046-018-0677-7