Combining genetic markers, on-farm information and infrared data for the in-line prediction of blood biomarkers of metabolic disorders in Holstein cattle

BackgroundVarious blood metabolites are known to be useful indicators of health status in dairy cattle, but their routine assessment is time-consuming, expensive, and stressful for the cows at the herd level. Thus, we evaluated the effectiveness of combining in-line near infrared (NIR) milk spectra...

Full description

Saved in:
Bibliographic Details
Published inJournal of animal science and biotechnology Vol. 15; no. 1; pp. 83 - 13
Main Authors Mota, Lucio F. M, Giannuzzi, Diana, Pegolo, Sara, Toledo-Alvarado, Hugo, Schiavon, Stefano, Gallo, Luigi, Trevisi, Erminio, Arazi, Alon, Katz, Gil, Rosa, Guilherme J. M, Cecchinato, Alessio
Format Journal Article
LanguageEnglish
Published London BioMed Central 09.06.2024
BMC
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:BackgroundVarious blood metabolites are known to be useful indicators of health status in dairy cattle, but their routine assessment is time-consuming, expensive, and stressful for the cows at the herd level. Thus, we evaluated the effectiveness of combining in-line near infrared (NIR) milk spectra with on-farm (days in milk [DIM] and parity) and genetic markers for predicting blood metabolites in Holstein cattle. Data were obtained from 388 Holstein cows from a farm with an AfiLab system. NIR spectra, on-farm information, and single nucleotide polymorphisms (SNP) markers were blended to develop calibration equations for blood metabolites using the elastic net (ENet) approach, considering 3 models: (1) Model 1 (M1) including only NIR information, (2) Model 2 (M2) with both NIR and on-farm information, and (3) Model 3 (M3) combining NIR, on-farm and genomic information. Dimension reduction was considered for M3 by preselecting SNP markers from genome-wide association study (GWAS) results.ResultsResults indicate that M2 improved the predictive ability by an average of 19% for energy-related metabolites (glucose, cholesterol, NEFA, BHB, urea, and creatinine), 20% for liver function/hepatic damage, 7% for inflammation/innate immunity, 24% for oxidative stress metabolites, and 23% for minerals compared to M1. Meanwhile, M3 further enhanced the predictive ability by 34% for energy-related metabolites, 32% for liver function/hepatic damage, 22% for inflammation/innate immunity, 42.1% for oxidative stress metabolites, and 41% for minerals, compared to M1. We found improved predictive ability of M3 using selected SNP markers from GWAS results using a threshold of > 2.0 by 5% for energy-related metabolites, 9% for liver function/hepatic damage, 8% for inflammation/innate immunity, 22% for oxidative stress metabolites, and 9% for minerals. Slight reductions were observed for phosphorus (2%), ferric-reducing antioxidant power (1%), and glucose (3%). Furthermore, it was found that prediction accuracies are influenced by using more restrictive thresholds (−log10(P-value) > 2.5 and 3.0), with a lower increase in the predictive ability.ConclusionOur results highlighted the potential of combining several sources of information, such as genetic markers, on-farm information, and in-line NIR infrared data improves the predictive ability of blood metabolites in dairy cattle, representing an effective strategy for large-scale in-line health monitoring in commercial herds.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-9782
2049-1891
DOI:10.1186/s40104-024-01042-3