Exploring the Impact of Solid-State Fermentation on Fava Bean Flour: A Comparative Study of Aspergillus oryzae and Rhizopus oligosporus

Fava bean ( L.) is a protein-rich pulse with high nutritional value, but its functional and sensory characteristics limit its application in foods. Solid-state fermentation (SSF) can modify the composition of plant proteins, modulate its functionality, and enhance the sensory aspects. In this study,...

Full description

Saved in:
Bibliographic Details
Published inFoods Vol. 13; no. 18; p. 2922
Main Authors Gautheron, Ophélie, Nyhan, Laura, Torreiro, Maria Garcia, Tlais, Ali Zein Alabiden, Cappello, Claudia, Gobbetti, Marco, Hammer, Andreas Klaus, Zannini, Emanuele, Arendt, Elke K, Sahin, Aylin W
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.09.2024
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Fava bean ( L.) is a protein-rich pulse with high nutritional value, but its functional and sensory characteristics limit its application in foods. Solid-state fermentation (SSF) can modify the composition of plant proteins, modulate its functionality, and enhance the sensory aspects. In this study, fava bean flour (FB) was fermented with and to produce FBA and FBR, respectively, ingredients with distinct nutritional, functional, and aroma characteristics. The protein content increased by 20% in FBA and 8% in FBR, while fat levels rose more significantly in FBR (+40%). The overall content of fermentable oligo-, di-, mono-saccharides, and polyols (FODMAPs) decreased by 47% (FBA) and 57% (FBR), although polyol production by was observed. SSF improved the nutritional profile of FBA and FBR, with a notable increase in the concentration of essential amino acids observed, and a reduction in most antinutrients, with the exception of trypsin inhibitors. SSF resulted in the formation of aggregates, which increased the particle size and reduced protein solubility. Emulsions prepared with the fermented ingredients separated faster, and the foaming capacity of both FBA and FBR was decreased, but an increase in water-holding capacity was observed. SSF resulted in the production of predominantly savoury-associated aroma compounds, with compounds characteristic of metallic and mouldy aromas reduced. These results indicate the potential of SSF to transform FB with enhanced nutritional value and improved sensory and functional properties.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2304-8158
2304-8158
DOI:10.3390/foods13182922