Molecular Interactions of Selective Agonists and Antagonists with the Retinoic Acid Receptor γ

All- retinoic acid (ATRA), the major active metabolite of all- retinol (vitamin A), is a key hormonal signaling molecule. In the adult organism, ATRA has a widespread influence on processes that are crucial to the growth and differentiation of cells and, in turn, the acquisition of mature cell funct...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 25; no. 12; p. 6568
Main Authors Powała, Katarzyna, Żołek, Teresa, Brown, Geoffrey, Kutner, Andrzej
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.06.2024
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:All- retinoic acid (ATRA), the major active metabolite of all- retinol (vitamin A), is a key hormonal signaling molecule. In the adult organism, ATRA has a widespread influence on processes that are crucial to the growth and differentiation of cells and, in turn, the acquisition of mature cell functions. Therefore, there is considerable potential in the use of retinoids to treat diseases. ATRA binds to the retinoic acid receptors (RAR) which, as activated by ATRA, selectively regulate gene expression. There are three main RAR isoforms, RARα, RARβ, and RARγ. They each have a distinct role, for example, RARα and RARγ regulate myeloid progenitor cell differentiation and hematopoietic stem cell maintenance, respectively. Hence, targeting an isoform is crucial to developing retinoid-based therapeutics. In principle, this is exemplified when ATRA is used to treat acute promyelocytic leukemia (PML) and target RARα within PML-RARα oncogenic fusion protein. ATRA with arsenic trioxide has provided a cure for the once highly fatal leukemia. Recent in vitro and in vivo studies of RARγ have revealed the potential use of agonists and antagonists to treat diseases as diverse as cancer, heterotopic ossification, psoriasis, and acne. During the final drug development there may be a need to design newer compounds with added modifications to improve solubility, pharmacokinetics, or potency. At the same time, it is important to retain isotype specificity and activity. Examination of the molecular interactions between RARγ agonists and the ligand binding domain of RARγ has revealed aspects to ligand binding that are crucial to RARγ selectivity and compound activity and key to designing newer compounds.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms25126568