Mechanical Properties of Alkasite Material with Different Curing Modes and Simulated Aging Conditions

This study aimed to evaluate the micro-mechanical and macro-mechanical properties of self-cured and light-cured alkasite and to investigate how accelerated degradation in acidic, alkaline, and ethanol solutions affects the macro-mechanical properties of self-cured and light-cured alkasite. The speci...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 17; no. 11; p. 2777
Main Authors Negovetic Mandic, Visnja, Plancak, Laura, Marovic, Danijela, Tarle, Zrinka, Trutina Gavran, Milena, Par, Matej
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.06.2024
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This study aimed to evaluate the micro-mechanical and macro-mechanical properties of self-cured and light-cured alkasite and to investigate how accelerated degradation in acidic, alkaline, and ethanol solutions affects the macro-mechanical properties of self-cured and light-cured alkasite. The specimens of the alkasite material (Cention Forte, Ivoclar Vivadent) were prepared according to the following three curing modes: (1) light-cured immediately, (2) light-cured after a 5-min delay, and (3) self-cured. Microhardness was tested before and after immersion in absolute ethanol to indirectly determine crosslink density, while flexural strength and flexural modulus were measured using a three-point bending test after accelerated aging in the following solutions: (1) lactic acid solution (pH = 4.0), (2) NaOH solution (pH = 13.0), (3) phosphate-buffered saline solution (pH = 7.4), and (4) 75% ethanol solution. The data were statistically analyzed using a two-way ANOVA and Tukey post hoc test. The results showed that the microhardness, flexural strength, and flexural modulus were significantly lower in self-cured specimens compared to light-cured specimens. A 5-min delay between the extrusion of the material from the capsule and light curing had no significant effect on any of the measured properties. A significant effect of the accelerated aging solutions on macro-mechanical properties was observed, with ethanol and alkaline solutions having a particularly detrimental effect. In conclusion, light curing was preferable to self-curing, as it resulted in significantly better micro- and macro-mechanical properties, while a 5-min delay between mixing the capsule and light curing had no negative effects.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1996-1944
1996-1944
DOI:10.3390/ma17112777