Digital spatial profiling of the microenvironment of muscle invasive bladder cancer
Muscle invasive bladder cancer (MIBC) is a molecularly diverse disease with varied clinical outcomes. Molecular studies typically employ bulk sequencing analysis, giving a transcriptomic snapshot of a section of the tumour. However, tumour tissues are not homogeneous, but are composed of distinct co...
Saved in:
Published in | Communications biology Vol. 7; no. 1; pp. 737 - 10 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
18.06.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Muscle invasive bladder cancer (MIBC) is a molecularly diverse disease with varied clinical outcomes. Molecular studies typically employ bulk sequencing analysis, giving a transcriptomic snapshot of a section of the tumour. However, tumour tissues are not homogeneous, but are composed of distinct compartments such as the tumour and stroma. To investigate the molecular profiles of bladder cancer, whilst also maintaining the spatial complexity of the tumours, we employed whole transcriptome Digital Spatial Profiling (DSP). With this method we generated a dataset of transcriptomic profiles of tumour epithelium, stroma, and immune infiltrate. With these data we investigate the spatial relationship of molecular subtype signatures and ligand signalling events. We find that Basal/Squamous and Classical subtypes are mostly restricted to tumour regions, while the stroma-rich subtype signatures are abundant within the stroma itself. Additionally, we identify ligand signalling events occurring between tumour, stroma, and immune infiltrate regions, such as immune infiltrate derived GPNMB, which was highly correlated with VEGFA expression within the tumour. These findings give us new insights into the diversity of MIBC at a molecular level and provide a dataset with detailed spatial information that was not available before in bladder cancer research.
A spatial transcriptomics study in bladder cancer investigates the spatial localization of molecular subtype signatures and ligand signaling events. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2399-3642 2399-3642 |
DOI: | 10.1038/s42003-024-06426-9 |