A Novel Low-Density-Biomass-Carbon Composite Coated with Carpet-like and Dandelion-Shaped Rare-Earth-Doped Cobalt Ferrite for Enhanced Microwave Absorption

A novel low-density composite for the absorption of microwaves was prepared by loading La-doped spinel cobalt ferrite (La-CFO) onto biomass carbon (BC) derived from corn stalks using a hydrothermal method. This composite (La-CFO@BC) not only maintained the advantageous properties of low density and...

Full description

Saved in:
Bibliographic Details
Published inMolecules (Basel, Switzerland) Vol. 29; no. 11; p. 2620
Main Authors Shang, Tao, Zhu, Hongwei, Shang, Yichun, Wu, Ruixia, Zhao, Xuebing
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 02.06.2024
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A novel low-density composite for the absorption of microwaves was prepared by loading La-doped spinel cobalt ferrite (La-CFO) onto biomass carbon (BC) derived from corn stalks using a hydrothermal method. This composite (La-CFO@BC) not only maintained the advantageous properties of low density and abundant porosity, but also exhibited a unique morphology, with La-CFO displaying a carpet-like structure interspersed with dandelion-shaped particles. The incorporation of La-CFO effectively tuned the electromagnetic parameters of the composite, thereby improving its impedance-matching attributes and its ability to absorb microwave radiation. At a frequency of 12.8 GHz for electromagnetic waves and with a thickness of 2.5 mm, La-CFO@BC demonstrated remarkable performance in microwave absorption, attaining a noteworthy minimum reflection ( ) of -53.2 dB and an effective absorption bandwidth (EAB) of 6.4 GHz. Furthermore, by varying the thickness of the La-CFO@BC within the range of 1.0 to 5.5 mm, the EAB could be broadened to 13.8 GHz, covering the entire X-band, the entire Ku-band, and a substantial portion of the C-band. This study demonstrated that La-CFO@BC was a promising alternative for electromagnetic wave attenuation, which offered superior performance in microwave absorption.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules29112620