Dual-Method Characterization and Optimization of Drilling Parameters for Picosecond Laser Drilling Quality in CFRP

Carbon fiber-reinforced polymer (CFRP), known for its light weight, high strength, and corrosion-resistant properties, is extensively used in the lightweight design of satellite components, the optimization of electronic device casings, and the processing of high-performance composite materials in t...

Full description

Saved in:
Bibliographic Details
Published inPolymers Vol. 16; no. 18; p. 2603
Main Authors Zheng, Zhao, Ma, Yao, Wang, Zhonghe, Liu, Siqi, Wu, Chunting
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 14.09.2024
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Carbon fiber-reinforced polymer (CFRP), known for its light weight, high strength, and corrosion-resistant properties, is extensively used in the lightweight design of satellite components, the optimization of electronic device casings, and the processing of high-performance composite materials in the defense sector. This study employs picosecond laser drilling technology for the precision machining of CFRP, demonstrating its advantages over traditional mechanical drilling and other unconventional methods in significantly reducing the heat-affected zone (HAZ) and enhancing hole wall quality. The optimization of laser power, scanning speed, and fill times via response surface methodology (RSM) significantly reduced the hole wall taper to 4.160° and confined the HAZ to within 18.577 μm, thereby enhancing machining precision. The actual test results show that the deviations in the hole taper and HAZ width were 5.0% and 2.2%, respectively, further verifying the effectiveness of the optimization method. This technique not only improves processing quality but also offers significant industrial application value in the machining of materials for related high-tech fields.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2073-4360
2073-4360
DOI:10.3390/polym16182603