Crosslinked Polydiallyldimethylammonium Chloride Adsorbent for the Selective Separation of Rhenium Ions from Pregnant Leach Solutions

The depletion of valuable mineral reserves has rendered effluents generated from mining and industrial processing activities a promising resource for the production of precious elements. The synthesis and improvement of new adsorbents to extract valuable compounds from industrial wastes and pregnant...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 17; no. 11; p. 2737
Main Authors Fathi, Mohammadbagher, Mahmoudian, Mehdi, Alorro, Richard Diaz, Chegini, Mostafa
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 04.06.2024
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The depletion of valuable mineral reserves has rendered effluents generated from mining and industrial processing activities a promising resource for the production of precious elements. The synthesis and improvement of new adsorbents to extract valuable compounds from industrial wastes and pregnant leach solutions, besides increasing wealth, can play a significant role in reducing environmental concerns. In this work, a new and low-cost adsorbent for the selective extraction of rhenium (perrhenate ions, ReO ) was synthesized by the free-radical polymerization (FRP) of a diallyl dimethylammonium chloride monomer (quaternary amine) in the presence of a crosslinker. Various methods were employed to characterize the polymeric adsorbent. The results revealed that the designed polymeric adsorbent had a high surface area and pores with nano-metric dimensions and a pore volume of 6.4 × 10 cm /g. Four environments-single, binary, multicomponent, and real solutions-were applied to evaluate the adsorbent's performance in the selective separation of Re. Additionally, these environments were used to understand the behavior of molybdenum ions, the primary competitors of perrhenate ions in the ion exchange process. In competitive conditions, using variations in / , an antagonism phenomenon ( / < 1) occurred due to the inhibitory effect of surface-adsorbed molybdenum ions on the binding of the perrhenate ions. However, across all conditions, the separation values for Re were higher than those for the other studied elements (Mo, Cu, Fe).
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1996-1944
1996-1944
DOI:10.3390/ma17112737