Resource Allocation and Interference Coordination Strategies in Heterogeneous Dual-Layer Satellite Networks

In the face of rapidly evolving communication technologies and increasing user demands, traditional terrestrial networks are challenged by the need for high-quality, high-speed, and reliable communication. This paper explores the integration of heterogeneous satellite networks (HSN) with emerging te...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 25; no. 4; p. 1005
Main Authors Li, Jinhong, Chai, Rong, Zhou, Tianyi, Liang, Chengchao
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 08.02.2025
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In the face of rapidly evolving communication technologies and increasing user demands, traditional terrestrial networks are challenged by the need for high-quality, high-speed, and reliable communication. This paper explores the integration of heterogeneous satellite networks (HSN) with emerging technologies such as Mobile Edge Computing (MEC), in-network caching, and Software-Defined Networking (SDN) to enhance service efficiency. By leveraging dual-layer satellite networks combining Low Earth Orbit (LEO) and Geostationary Earth Orbit (GEO) satellites, the study addresses resource allocation and interference coordination challenges. This paper proposes a novel resource allocation and interference coordination strategy for dual-layer satellite networks integrating LEO and GEO satellites. We formulate a mathematical optimization problem to optimize resource allocation while minimizing co-channel interference and develop an ADMM-based distributed algorithm for efficient problem-solving. The proposed scheme enhances service efficiency by incorporating MEC, in-network caching, and SDN technologies into the satellite network. Simulation results demonstrate that our proposed algorithm significantly improves network performance by effectively managing resources and reducing interference.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s25041005