Inverted Metamorphic III–V Triple-Junction Solar Cell with a 1 eV CuInSe2 Bottom Subcell

A new triple-junction solar cell (3J) design exploiting the highly absorptive I–III–VI chalcopyrite CuInSe2 material is proposed as an alternative to III–V semiconductor 3J solar cells. The proposed structure consists of GaInP (1.9 eV)/Ga(In)As (1.4 eV)/CuInSe2 (1 eV) which can be grown on a GaAs su...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of photoenergy Vol. 2014; no. 2014; pp. 1 - 10
Main Authors Hinzer, Karin, Trojnar, A. H., Bouchard, F., Walker, Alex W.
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 01.01.2014
Hindawi Limited
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A new triple-junction solar cell (3J) design exploiting the highly absorptive I–III–VI chalcopyrite CuInSe2 material is proposed as an alternative to III–V semiconductor 3J solar cells. The proposed structure consists of GaInP (1.9 eV)/Ga(In)As (1.4 eV)/CuInSe2 (1 eV) which can be grown on a GaAs substrate in an inverted manner using epitaxial lift-off techniques. To lattice-match epitaxial CuInSe2 to Ga(In)As, a compositionally graded buffer region composed of GaxIn1−xP is used. The modeling and simulation of the device include the effects of threading dislocations on minority carrier lifetimes in the metamorphic buffer and bottom subcell active region. Studies focus on device performance under standard testing conditions and concentrated illumination. The results are compared to a reference lattice mismatched 3J composed of GaInP (1.9 eV)/Ga(In)As (1.4 eV)/GaInAs (1 eV) and to a lattice matched 3J composed of GaInP (1.9 eV)/Ga(In)As (1.4 eV)/Ge (0.67 eV). The advantage of CuInSe2 is its higher absorption coefficient, which requires only 1 μm of active material compared to 4 μm of GaInAs in the bottom subcell of the reference lattice mismatched cell. The proposed design reaches an efficiency of 32.6% under 1 sun illumination at 300 K with 105 cm−2 threading dislocations and 39.6% at 750 suns.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1110-662X
1687-529X
DOI:10.1155/2014/913170