One-Step Synthesis, Crystallography, and Acute Toxicity of Two Boron-Carbohydrate Adducts That Induce Sedation in Mice
Boronic acids form diester bonds with cis-hydroxyl groups in carbohydrates. The formation of these adducts could impair the physical and chemical properties of precursors, even their biological activity. Two carbohydrate derivatives from d-fructose and d-arabinose and phenylboronic acid were synthes...
Saved in:
Published in | Pharmaceuticals (Basel, Switzerland) Vol. 17; no. 6; p. 781 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
14.06.2024
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Boronic acids form diester bonds with cis-hydroxyl groups in carbohydrates. The formation of these adducts could impair the physical and chemical properties of precursors, even their biological activity. Two carbohydrate derivatives from d-fructose and d-arabinose and phenylboronic acid were synthesized in a straightforward one-step procedure and chemically characterized via spectroscopy and X-ray diffraction crystallography. Additionally, an acute toxicity test was performed to determine their lethal dose 50 (LD
) values by using Lorke's method. Analytical chemistry assays confirmed the formation of adducts by the generation of diester bonds with the β-d-pyranose of carbohydrates, including signals corresponding to the formation of new bonds, such as the stretching of B-O bonds. NMR spectra yielded information about the stereoselectivity in the synthesis reaction: Just one signal was found in the range for the anomeric carbon in the
C NMR spectra of both adducts. The acute toxicity tests showed that the LD
value for both compounds was 1265 mg/kg, while the effective dose 50 (ED
) for sedation was 531 mg/kg. However, differences were found in the onset and lapse of sedation. For example, the arabinose derivative induced sedation for more than 48 h at 600 mg/kg, while the fructose derivative induced sedation for less than 6 h at the same dose without the death of the mice. Thus, we report for the first time two boron-containing carbohydrate derivatives inducing sedation after intraperitoneal administration. They are bioactive and highly safe agents. Further biological evaluation is desirable to explore their medical applications. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1424-8247 1424-8247 |
DOI: | 10.3390/ph17060781 |