Multi-step algorithms for solving EPs

The paper introduces and analysizes the convergence of two multi-step proximal-like algorithms for pseudomonotone and Lipschitz-type continuous equilibrium problems in a real Hilbert space. The algorithms are combinations between the multi-step proximal-like method and Mann or Halpern iterations. Th...

Full description

Saved in:
Bibliographic Details
Published inMathematical modelling and analysis Vol. 23; no. 3; pp. 453 - 472
Main Authors Anh, Pham Ngoc, Hieu, Dang Van
Format Journal Article
LanguageEnglish
Published Vilnius Vilnius Gediminas Technical University 01.01.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The paper introduces and analysizes the convergence of two multi-step proximal-like algorithms for pseudomonotone and Lipschitz-type continuous equilibrium problems in a real Hilbert space. The algorithms are combinations between the multi-step proximal-like method and Mann or Halpern iterations. The weakly and strongly convergent theorems are established with the prior knowledge of two Lipschitz-type continuous constants. Moreover, by choosing two sequences of suitable stepsizes, we also show that the multi-step proximal-like algorithm for strongly pseudomonotone and Lipschitz-type continuous equilibrium problems where the construction of solution approximations and the establishing of its convergence do not require the prior knowledge of strongly pseudomonotone and Lipschitz-type continuous constants of bifunctions. Finally, several numerical examples are reported to illustrate the convergence and the performance of the proposed algorithms over classical extragradient-like algorithms.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1392-6292
1648-3510
DOI:10.3846/mma.2018.027