Multi-step algorithms for solving EPs
The paper introduces and analysizes the convergence of two multi-step proximal-like algorithms for pseudomonotone and Lipschitz-type continuous equilibrium problems in a real Hilbert space. The algorithms are combinations between the multi-step proximal-like method and Mann or Halpern iterations. Th...
Saved in:
Published in | Mathematical modelling and analysis Vol. 23; no. 3; pp. 453 - 472 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Vilnius
Vilnius Gediminas Technical University
01.01.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The paper introduces and analysizes the convergence of two multi-step proximal-like algorithms for pseudomonotone and Lipschitz-type continuous equilibrium problems in a real Hilbert space. The algorithms are combinations between the multi-step proximal-like method and Mann or Halpern iterations. The weakly and strongly convergent theorems are established with the prior knowledge of two Lipschitz-type continuous constants. Moreover, by choosing two sequences of suitable stepsizes, we also show that the multi-step proximal-like algorithm for strongly pseudomonotone and Lipschitz-type continuous equilibrium problems where the construction of solution approximations and the establishing of its convergence do not require the prior knowledge of strongly pseudomonotone and Lipschitz-type continuous constants of bifunctions. Finally, several numerical examples are reported to illustrate the convergence and the performance of the proposed algorithms over classical extragradient-like algorithms. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1392-6292 1648-3510 |
DOI: | 10.3846/mma.2018.027 |