Bladder cancer course, four genetic high-risk variants, and histopathological findings

Urinary bladder cancer, a smoking and occupation related disease, was subject of several genome-wide association studies (GWAS). However, studies on the course of the disease based on GWAS findings differentiating between muscle invasive bladder cancer (MIBC) and non-muscle invasive bladder cancer (...

Full description

Saved in:
Bibliographic Details
Published inEXCLI journal Vol. 22; pp. 867 - 879
Main Authors Kadhum, Thura, Selinski, Silvia, Blaszkewicz, Meinolf, Reinders, Jörg, Roth, Emanuel, Volkert, Frank, Ovsiannikov, Daniel, Moormann, Oliver, Gerullis, Holger, Barski, Dimitri, Otto, Thomas, Höhne, Svetlana, Hengstler, Jan G, Golka, Klaus
Format Journal Article
LanguageEnglish
Published Leibniz Research Centre for Working Environment and Human Factors 01.01.2023
IfADo - Leibniz Research Centre for Working Environment and Human Factors, Dortmund
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Urinary bladder cancer, a smoking and occupation related disease, was subject of several genome-wide association studies (GWAS). However, studies on the course of the disease based on GWAS findings differentiating between muscle invasive bladder cancer (MIBC) and non-muscle invasive bladder cancer (NMIBC) are rare. Thus we investigated 4 single nucleotide polymorphisms (SNPs) detected in GWAS, related to the genes coding for TACC3 (transforming, acidic coiled-coil containing protein 3), for FGFR3 (fibroblast growth factor receptor 3), for PSCA (prostate stem cell antigen) and the genes coding for CBX6 (chromobox homolog 6) and APOBEC3A (apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3A). This study is based on 712 bladder cancer patients and 875 controls from 3 different case control studies in Germany. The 4 SNPs of interest (PSCA rs2294008 and rs2978974, FGFR3-TACC3 rs798766, and CBX6-APOBEC3A rs1014971) were determined by real-time polymerase chain reaction. The distribution of the 4 SNPs does not vary significantly between cases and controls in the entire study group and in the 3 local subgroups, including two former highly industrialized areas and a region without such history. Also, no significant differences in the bladder cancer subgroups of MIBC and NMIBC were observed. The 4 investigated SNPs do not noticeably contribute differently to the bladder cancer risk for the bladder cancer subgroups of MIBC and NMIBC.Urinary bladder cancer, a smoking and occupation related disease, was subject of several genome-wide association studies (GWAS). However, studies on the course of the disease based on GWAS findings differentiating between muscle invasive bladder cancer (MIBC) and non-muscle invasive bladder cancer (NMIBC) are rare. Thus we investigated 4 single nucleotide polymorphisms (SNPs) detected in GWAS, related to the genes coding for TACC3 (transforming, acidic coiled-coil containing protein 3), for FGFR3 (fibroblast growth factor receptor 3), for PSCA (prostate stem cell antigen) and the genes coding for CBX6 (chromobox homolog 6) and APOBEC3A (apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3A). This study is based on 712 bladder cancer patients and 875 controls from 3 different case control studies in Germany. The 4 SNPs of interest (PSCA rs2294008 and rs2978974, FGFR3-TACC3 rs798766, and CBX6-APOBEC3A rs1014971) were determined by real-time polymerase chain reaction. The distribution of the 4 SNPs does not vary significantly between cases and controls in the entire study group and in the 3 local subgroups, including two former highly industrialized areas and a region without such history. Also, no significant differences in the bladder cancer subgroups of MIBC and NMIBC were observed. The 4 investigated SNPs do not noticeably contribute differently to the bladder cancer risk for the bladder cancer subgroups of MIBC and NMIBC.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1611-2156
1611-2156
DOI:10.17179/excli2023-5862