High-Precision Rayleigh Doppler Lidar with Fiber Solid-State Cascade Amplified High-Power Single-Frequency Laser for Wind Measurement
We introduce a novel Rayleigh Doppler lidar (RDLD) system that utilizes a high-power single-frequency laser with over 60 W average output power, achieved through fiber solid-state cascade amplification. This lidar represents a significant advancement by addressing common challenges such as mode hopp...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 17; no. 4; p. 573 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.02.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We introduce a novel Rayleigh Doppler lidar (RDLD) system that utilizes a high-power single-frequency laser with over 60 W average output power, achieved through fiber solid-state cascade amplification. This lidar represents a significant advancement by addressing common challenges such as mode hopping and multi-longitudinal mode issues. Designed for atmospheric wind and temperature profiling, the system operates effectively between altitudes of 30 km and 70 km. Key performance metrics include wind speed and temperature measurement errors below 7 m/s and 3 K, respectively, at 60 km, based on 30 min temporal and 1 km spatial resolutions. Observation data align closely with ECMWF reanalysis data, showing high correlation coefficients of 0.98, 0.91, and 0.94 for zonal wind, meridional wind, and temperature, respectively. Continuous observations also reveal detailed wind field variations caused by gravity waves, demonstrating the system’s high resolution and reliability. These results highlight the RDLD system’s potential for advancing meteorological monitoring, atmospheric dynamics studies, and environmental safety applications. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2072-4292 |
DOI: | 10.3390/rs17040573 |