Enhanced Photostability and Photoluminescence of PbI2 via Constructing Type‐I Heterostructure with ZnO

Improving the stability of lead iodide (PbI2), especially photostability, is in crucial demand for the realization of application‐level optoelectronic devices. In this regard, deposition of organic polymers on PbI2 as a protective layer is a common strategy to improve its stability, but polymers wit...

Full description

Saved in:
Bibliographic Details
Published inAdvanced photonics research Vol. 2; no. 5
Main Authors Li, Jixiu, Li, Yuanzheng, Liu, Weizhen, Feng, Qiushi, Huang, Rui, Zhu, Xiaonan, Liu, Xiuling, Zhang, Cen, Xu, Haiyang, Liu, Yichun
Format Journal Article
LanguageEnglish
Published Hoboken John Wiley & Sons, Inc 01.05.2021
Wiley-VCH
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Improving the stability of lead iodide (PbI2), especially photostability, is in crucial demand for the realization of application‐level optoelectronic devices. In this regard, deposition of organic polymers on PbI2 as a protective layer is a common strategy to improve its stability, but polymers with low thermal conductivity generally cannot produce the desired effect. Herein, a novel strategy is proposed for improving the photostability of PbI2 at different excitation wavelengths, including 320, 405, and 532 nm, via constructing type‐I heterostructure with ZnO with high thermal conductivity. In addition, due to the type‐I band alignment between PbI2 and ZnO, the photogenerated carriers in ZnO can be transferred to PbI2, resulting in a nearly eightfold photoluminescence enhancement of PbI2 under 320 nm laser excitation. The ZnO as a protective layer forming type‐I heterostructure is evidenced as a feasible strategy for enhancing the photostability and photoluminescence of PbI2, facilitating the development of practical applications. Herein, a novel and feasible strategy is proposed for improving the photostability of lead iodide (PbI2) via constructing type‐I heterostructure with ZnO with high thermal conductivity. In addition, due to the type‐I band alignment between ZnO and PbI2, the photoluminescence intensity of PbI2 is enhanced to nearly eightfold under 320 nm laser excitation.
AbstractList Improving the stability of lead iodide (PbI2), especially photostability, is in crucial demand for the realization of application‐level optoelectronic devices. In this regard, deposition of organic polymers on PbI2 as a protective layer is a common strategy to improve its stability, but polymers with low thermal conductivity generally cannot produce the desired effect. Herein, a novel strategy is proposed for improving the photostability of PbI2 at different excitation wavelengths, including 320, 405, and 532 nm, via constructing type‐I heterostructure with ZnO with high thermal conductivity. In addition, due to the type‐I band alignment between PbI2 and ZnO, the photogenerated carriers in ZnO can be transferred to PbI2, resulting in a nearly eightfold photoluminescence enhancement of PbI2 under 320 nm laser excitation. The ZnO as a protective layer forming type‐I heterostructure is evidenced as a feasible strategy for enhancing the photostability and photoluminescence of PbI2, facilitating the development of practical applications. Herein, a novel and feasible strategy is proposed for improving the photostability of lead iodide (PbI2) via constructing type‐I heterostructure with ZnO with high thermal conductivity. In addition, due to the type‐I band alignment between ZnO and PbI2, the photoluminescence intensity of PbI2 is enhanced to nearly eightfold under 320 nm laser excitation.
Improving the stability of lead iodide (PbI2), especially photostability, is in crucial demand for the realization of application‐level optoelectronic devices. In this regard, deposition of organic polymers on PbI2 as a protective layer is a common strategy to improve its stability, but polymers with low thermal conductivity generally cannot produce the desired effect. Herein, a novel strategy is proposed for improving the photostability of PbI2 at different excitation wavelengths, including 320, 405, and 532 nm, via constructing type‐I heterostructure with ZnO with high thermal conductivity. In addition, due to the type‐I band alignment between PbI2 and ZnO, the photogenerated carriers in ZnO can be transferred to PbI2, resulting in a nearly eightfold photoluminescence enhancement of PbI2 under 320 nm laser excitation. The ZnO as a protective layer forming type‐I heterostructure is evidenced as a feasible strategy for enhancing the photostability and photoluminescence of PbI2, facilitating the development of practical applications.
Author Zhang, Cen
Liu, Yichun
Zhu, Xiaonan
Feng, Qiushi
Liu, Xiuling
Huang, Rui
Li, Jixiu
Liu, Weizhen
Li, Yuanzheng
Xu, Haiyang
Author_xml – sequence: 1
  givenname: Jixiu
  surname: Li
  fullname: Li, Jixiu
  organization: Northeast Normal University
– sequence: 2
  givenname: Yuanzheng
  orcidid: 0000-0002-4309-0160
  surname: Li
  fullname: Li, Yuanzheng
  email: liyz264@nenu.edu.cn
  organization: Northeast Normal University
– sequence: 3
  givenname: Weizhen
  surname: Liu
  fullname: Liu, Weizhen
  email: wzliu@nenu.edu.cn
  organization: Northeast Normal University
– sequence: 4
  givenname: Qiushi
  surname: Feng
  fullname: Feng, Qiushi
  organization: Northeast Normal University
– sequence: 5
  givenname: Rui
  surname: Huang
  fullname: Huang, Rui
  organization: Northeast Normal University
– sequence: 6
  givenname: Xiaonan
  surname: Zhu
  fullname: Zhu, Xiaonan
  organization: Northeast Normal University
– sequence: 7
  givenname: Xiuling
  surname: Liu
  fullname: Liu, Xiuling
  organization: Changchun University of Science and Technology
– sequence: 8
  givenname: Cen
  surname: Zhang
  fullname: Zhang, Cen
  organization: Northeast Normal University
– sequence: 9
  givenname: Haiyang
  surname: Xu
  fullname: Xu, Haiyang
  organization: Northeast Normal University
– sequence: 10
  givenname: Yichun
  surname: Liu
  fullname: Liu, Yichun
  organization: Northeast Normal University
BookMark eNpNkctKAzEUhoMoWGu3rgOuq7nMLUupVQuFFqkbNyEzOWlTxqRmMkp3PoLP6JM4taW4OreP_5zDf4FOnXeA0BUlN5QQdqv0JtwwwgghtOAnqMcyIYaCCX76Lz9Hg6ZZdwxLKaep6KHV2K2Uq0Dj-cpH30RV2trGLVbu0KrbN-ugqaCjsDd4Xk4Y_rAKj7xrYmiraN0SL7Yb-Pn6nuAniBD8ftAGwJ82rvCrm12iM6PqBgaH2EcvD-PF6Gk4nT1ORnfToe6u5ENKFSVl94ahYExOGSsI58CAq5Ro4Gla0jLLTJGASDWtSm7yDkhUYjQrdMn7aLLX1V6t5SbYNxW20isr_xo-LKUK0VY1SEp0IkhFtaYs4TlTZVpoLhKR50nKDOu0rvdam-DfW2iiXPs2uO58yUkhioxkJOkosac-bQ3b40pK5M4ZuXNGHp2Rd_fz52PFfwEdu4ZO
ContentType Journal Article
Copyright 2021 The Authors. Advanced Photonics Research published by Wiley‐VCH GmbH
Copyright John Wiley & Sons, Inc. 2021
Copyright_xml – notice: 2021 The Authors. Advanced Photonics Research published by Wiley‐VCH GmbH
– notice: Copyright John Wiley & Sons, Inc. 2021
DBID 24P
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1002/adpr.202000183
DatabaseName Wiley Online Library Open Access
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Open Access Full Text
DatabaseTitle Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2699-9293
EndPage n/a
ExternalDocumentID oai_doaj_org_article_10d490c1dd124372ab58d394977452f2
ADPR202000183
Genre article
GrantInformation_xml – fundername: National Key Research and Development Program of China
  funderid: 2019YFB2205100
– fundername: Postdoctoral Science Foundation funded project from Jilin Province
  funderid: 111865005; YDZJ202101ZYTS049; YDZJ202101ZYTS041; YDZJ202101ZYTS133
– fundername: China National Funds for Distinguished Young Scientists
  funderid: 52025022
– fundername: Postdoctoral Research Foundation of China
  funderid: 2020M681025
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 2412020QD015; 2412019BJ006 and 2412019FZ034
– fundername: National Natural Science Foundation of China
  funderid: 51732003; 51872043; 61604037; 11874104; 12074060; 12004069
– fundername: Excellent Young Talents Fund of Jilin Provincial Science and Technology Department
  funderid: 20190103007JH
– fundername: Overseas Expertise Introduction Project for Discipline Innovation
  funderid: B13013
– fundername: Fund from Ministry of Education
  funderid: 6141A02033414
GroupedDBID 0R~
1OC
24P
AAFWJ
AAHHS
ACCFJ
ACCMX
ADZOD
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
BENPR
CCPQU
EBS
GROUPED_DOAJ
IAO
ITC
M~E
OK1
PIMPY
AAMMB
ABUWG
AEFGJ
AFPKN
AGXDD
AIDQK
AIDYY
AZQEC
DWQXO
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
WIN
ID FETCH-LOGICAL-d2693-11a10b200f1eff71228033e2e3a50de355b1b66f84e95d1cb3f70334a4fd28db3
IEDL.DBID DOA
ISSN 2699-9293
IngestDate Wed Aug 27 01:16:05 EDT 2025
Sat Jul 26 02:47:01 EDT 2025
Wed Jan 22 16:30:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d2693-11a10b200f1eff71228033e2e3a50de355b1b66f84e95d1cb3f70334a4fd28db3
Notes Research data are not shared.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4309-0160
OpenAccessLink https://doaj.org/article/10d490c1dd124372ab58d394977452f2
PQID 3089860604
PQPubID 6860423
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_10d490c1dd124372ab58d394977452f2
proquest_journals_3089860604
wiley_primary_10_1002_adpr_202000183_ADPR202000183
PublicationCentury 2000
PublicationDate May 2021
20210501
2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: May 2021
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced photonics research
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley-VCH
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley-VCH
References 2019; 7
2018; 29
2019; 6
2019; 31
2010; 108
2017; 28
2019; 15
2020; 15
2019; 19
2020; 14
2020; 12
2020; 11
2020; 32
2015; 9
2017; 9
2020; 19
2020; 8
2017; 52
2020; 4
2016; 2
2020
2017; 11
2020; 191
2017; 13
2013; 499
2005; 98
2018; 30
2017; 185
2015; 91
2014; 9
2012; 7
2014; 8
2018; 98
2018; 10
2016; 8
2018; 14
References_xml – volume: 108
  start-page: 103711
  year: 2010
  publication-title: J. Appl. Phys.
– volume: 15
  start-page: 545
  year: 2020
  publication-title: Nat. Nanotechnol.
– volume: 98
  start-page: 085431
  year: 2018
  publication-title: Phys. Rev. B
– volume: 19
  start-page: 299
  year: 2020
  publication-title: Nat. Mater.
– volume: 52
  start-page: 1600370
  year: 2017
  publication-title: Cryst. Res. Technol.
– volume: 8
  start-page: 1901226
  year: 2020
  publication-title: Adv. Opt. Mater.
– volume: 98
  start-page: 041301
  year: 2005
  publication-title: J. Appl. Phys.
– volume: 7
  start-page: 699
  year: 2012
  publication-title: Nat. Nanotechnol.
– volume: 8
  start-page: 1102
  year: 2014
  publication-title: ACS Nano
– volume: 29
  start-page: 124001
  year: 2018
  publication-title: Nanotechnology
– volume: 12
  start-page: 32099
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 31
  start-page: 1806562
  year: 2019
  publication-title: Adv. Mater.
– volume: 31
  start-page: 1806411
  year: 2019
  publication-title: Adv. Mater.
– volume: 14
  start-page: 1801938
  year: 2018
  publication-title: Small
– volume: 9
  start-page: 3736
  year: 2017
  publication-title: Nanoscale
– year: 2020
  publication-title: Nano Res.
– volume: 13
  start-page: 1702024
  year: 2017
  publication-title: Small
– volume: 4
  start-page: 29
  year: 2020
  publication-title: npj 2D Mater. Appl.
– volume: 15
  start-page: 1901767
  year: 2019
  publication-title: Small
– volume: 31
  start-page: 1803432
  year: 2019
  publication-title: Adv. Mater.
– volume: 2
  start-page: 1600291
  year: 2016
  publication-title: Adv. Electronic Mater.
– volume: 8
  start-page: 1653
  year: 2016
  publication-title: Mater. Interfaces
– volume: 28
  start-page: 455703
  year: 2017
  publication-title: Nanotechnology
– volume: 10
  start-page: 15812
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 713
  year: 2017
  publication-title: ACS Nano
– volume: 9
  start-page: 9451
  year: 2015
  publication-title: ACS Nano
– volume: 7
  start-page: 2710
  year: 2019
  publication-title: J. Mater. Chem. C
– volume: 14
  start-page: 2628
  year: 2020
  publication-title: ACS Nano
– volume: 12
  start-page: 18870
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 91
  start-page: 165308
  year: 2015
  publication-title: Phys. Rev. B
– volume: 19
  start-page: 7217
  year: 2019
  publication-title: Nano Lett.
– volume: 9
  start-page: 687
  year: 2015
  publication-title: ACS Nano
– volume: 185
  start-page: 83
  year: 2017
  publication-title: Journal of Luminescence
– volume: 6
  start-page: 025014
  year: 2019
  publication-title: 2D Materials
– volume: 499
  start-page: 419
  year: 2013
  publication-title: Nature
– volume: 32
  start-page: 1903800
  year: 2020
  publication-title: Adv. Mater.
– volume: 9
  start-page: 768
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 191
  start-page: 110999
  year: 2020
  publication-title: Colloids Surfaces B: Biointerfaces
– volume: 11
  start-page: 1
  year: 2020
  publication-title: Nat. Commun.
– volume: 30
  start-page: 1870271
  year: 2018
  publication-title: Adv. Mater.
SSID ssj0002513159
Score 2.179739
Snippet Improving the stability of lead iodide (PbI2), especially photostability, is in crucial demand for the realization of application‐level optoelectronic devices....
SourceID doaj
proquest
wiley
SourceType Open Website
Aggregation Database
Publisher
SubjectTerms Efficiency
Graphene
Heat conductivity
heterostructures
Lasers
Nanowires
PbI2
photoluminescences
photostability
Polymers
Quantum dots
Radiation
Spectrum analysis
ZnO
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTuQwELVYLnMZDQI0PSzygWuEtyTOacTSqOEALQQS4mJ5pbkkTQMjzY1P4Bv5ElyOu4ELxzhSolTZVc_ll1cI7TkptSHWFKERZSGscIVsRF24mJ21qW0derbFeTW6Fmc35U0uuD1mWuU8JqZA7ToLNfJ9TmQjK5B6-Tt9KKBrFJyu5hYay2g1hmAZN1-rh8Pz8eWiyhKzN6epYxqrQIoyJre5ciNh-9pNQRIU_lahoBuYVPu_QM3PgDVlnJNf6GeGivig9-0aWvLtOpoM20k6tMfjSffURWyX2K3_sW7zUIw2QGW3sGRxF_DYnDL8715j6M3Zq8W2dxj2n28vr6d4BHyYrr_xPPMYCrP4tr3YQNcnw6ujUZG7JRQufhsvKNWUmPgtgfoQago6N5x75rkuifMRVxhqqipI4ZvSUWt4dAPnQovgmHSGb6KVtmv9b4QdaL7HtVwTbSNgKXVguraaVnG76GVJBugQLKWmvSCGAonqNNDN7lSe8YoSJxpiqXMURA-ZNqV0vBEAOEsW2ABtz-2s8rp5VB9eHiCWbL94Sa-vzBQ4TS2cpg6Ox5eLqz_fP3ML_WBASUl8xW20Ek3rdyKmeDK7eeK8A7e6yRo
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ27TsMwFIYtKAsLAgGi3OSBNcK3JM7IpVXLABUCqWKx7NimLAmiBYmNR-AZeRJ8nBDKyhhHSeRzfOzfzvFnhE6slNqQ0iS-EGkiSmETWYg8sWF01iYvc99kW1xno3txNU2nS7v4Gz5Et-AGkRH7awhwbeanv9BQbZ-B5wlbTUKzXEVrsL8W6PlMTLpVljB6cxpPTGMZoCjD4PZDbiTs9O8rWmr_H6m5LFjjiDPcRButVMRnjW-30IqrttFsUM3iT3s8mdWLOmi7mN36jnXVFoXeBlLZSwhZXHs8MWOG3540hrM5G1ps9Yhh_vn18TnGI8iHqZsbry8Ow8IsfqhudtD9cHB3MUra0xISG-rGE0o1JSbUxVPnfU6Bc8O5Y47rlFgXdIWhJsu8FK5ILS0ND27gXGjhLZPW8F3Uq-rK7SFsgfkeYjknugyCJdWe6bzUNAvTRSdT0kfnYCn13AAxFCCqY0H98qjaFq8osaIgJbWWAvSQaZNKywsBgjNlnvXR4Y-dVRs3c8WJLGQGQJ8-YtH23UcavjJT4DTVOU2dXU5uu6v9_zx0gNYZJKrELMZD1AsGd0dBaSzMcWxM3_u8yxw
  priority: 102
  providerName: Wiley-Blackwell
Title Enhanced Photostability and Photoluminescence of PbI2 via Constructing Type‐I Heterostructure with ZnO
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadpr.202000183
https://www.proquest.com/docview/3089860604
https://doaj.org/article/10d490c1dd124372ab58d394977452f2
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUKXLhUVAWxQFc-9BoRfyRxjktZtFTqEq2KhLhYdmx3e0lW7YLEBfET-I39JczYy2o59cIlUpxDnJnMzBvn5ZmQr04pY_PWZqGWRSZb6TJVyypzUJ2NrdoqJLbFtJxcy-83xc3GVl_ICUvywMlwENVO1nnLnGOonceNLZQTtUTcUvAQsy_UvI1mCnMwVG0BhfpVpTHnp8YtUP4T_0xhqBEYFfrfwMpNcBqry8Ue-biChXSUpvOJfPDdZzIfd_P4gZ42837ZA46LTNYHCt1_GoLMgrT1FsOT9oE29pLT-9-G4j6cSRm2-0Wx1_z39HxJJ8h96dOFuz-e4iIsve2u9sn1xfjnt0m22hkhc7ysRcaYYbmFZwnMh1Ax1LQRwnMvTJE7DxjCMluWQUlfF461VoDJhZBGBseVs-KAbHd95w8JdajvDnFb5aYFcFKYwE3VGlZCa-hVkQ_IGVpKL5L4hUY56jgATtIrJ-n_OWlATl7trFcx8leLXNWqRPGeAeHR9uubJC1lrtFpeu00PTpvZuuzo_eY2DHZ5UhSiQzGE7INDvBfAGUs7ZBscdkMyc7ZeNrMhvH1guOPx_ELE6zQeA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELbK9gAXBALElgI-wNGq_5I4B4RautUuLcuqaqWKi_Fvl0uytAXUG4_Ak_BQPAkeJ1ngwq3HOJIdjcfjb5zP3yD0witlLHWWxFoWRDrpiaplRXzanY2tXBU7tsW8nJ7Kt2fF2Qb6OdyFAVrlEBNzoPatgzPyHUFVrUqQenm9-kygahT8XR1KaHRucRiuv6WU7fLVbD_N70vODyYnb6akrypAPC9rQRgzjNrkHJGFGCsGejBCBB6EKagPaf-1zJZlVDLUhWfOivS5Qkgjo-fKW5H6vYU2pUipzAht7k3mi-P1qU5CC4LlCm1prJok7CEGpUjKd4xfgQQp3I5hoFOYqwT8A23_Bsh5hzu4h-720BTvdr50H22E5gFaTpplJgngxbK9ahOWzGzaa2yavilFN6DOOwgRuI14YWccf_1kMNQC7dRpm3MM-e6v7z9meAr8m7Z78eUiYDgIxh-a9w_R6Y3Y8REaNW0THiPsQWM-xY6KGpcAUmEiN5UzrEzpaVAFHaM9sJRedQIcGiSxc0N7ca77FaYZ9bKmjnnPQGSRG1soL2oJALfgkY_R9mBn3a_TS_3Hq8aIZ9uvB-n0nLmGSdPrSdO7-4vj9dPW__t8jm5PT94d6aPZ_PAJusOBDpO5kttolMwcniY8c2Wf9U6E0ceb9tvfk58FCA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ27btswFIaJXICiS5EgKeo0Fw5ZBfMmiRrdJoadBIlQ1ICRhSBF0s4iGalboFsfoc_YJykPJSvxmlEUJEHn8JA_ycOPCF1aKbUhlUl8IdJEVMImshB5YkPvrE1e5b7NtrjPJjNxM0_nr3bxt3yIfsINIiO21xDgK-uHL9BQbVfA84StJqFa7qL9uOIHbGdR9rMsoffmNJ6YxjJAUYbObUNuJGy4_YqO2r8lNV8L1tjjjA_Qh04q4lHr20O04-ojtLyul3HRHpfLZt0EbRezW39jXXdFobWBVPYKQhY3HpdmyvCvJ43hbM6WFlsvMIw___35O8UTyIdp2hs_nx2GiVn8WD8co9n4-vvXSdKdlpDY8G88oVRTYsK_eOq8zylwbjh3zHGdEuuCrjDUZJmXwhWppZXhwQ2cCy28ZdIa_hHt1U3tPiFsgfkeYjknugqCJdWe6bzSNAvDRSdTMkBfwFJq1QIxFCCqY0HzvFBdjVeUWFGQilpLAXrItEml5YUAwZkyzwbodGNn1cXND8WJLGQGQJ8BYtH2_UdavjJT4DTVO02Nrspv_dXJWx66QO_Kq7G6m97ffkbvGeSsxITGU7QXbO_OguhYm_NYr_4D92_Nug
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Photostability+and+Photoluminescence+of+PbI2+via+Constructing+Type%E2%80%90I+Heterostructure+with+ZnO&rft.jtitle=Advanced+photonics+research&rft.au=Jixiu+Li&rft.au=Yuanzheng+Li&rft.au=Weizhen+Liu&rft.au=Qiushi+Feng&rft.date=2021-05-01&rft.pub=Wiley-VCH&rft.eissn=2699-9293&rft.volume=2&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadpr.202000183&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_10d490c1dd124372ab58d394977452f2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2699-9293&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2699-9293&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2699-9293&client=summon