Combining Drone LiDAR and Virtual Reality Geovisualizations towards a Cartographic Approach to Visualize Flooding Scenarios
This study aims to create virtual reality (VR) geovisualizations using 3D point clouds obtained from airborne LiDAR technology. These visualizations were used to map the current state of river channels and tributaries in the Thessalian Plain, Greece, following severe flooding in the summer of 2023....
Saved in:
Published in | Drones (Basel) Vol. 8; no. 8; p. 398 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This study aims to create virtual reality (VR) geovisualizations using 3D point clouds obtained from airborne LiDAR technology. These visualizations were used to map the current state of river channels and tributaries in the Thessalian Plain, Greece, following severe flooding in the summer of 2023. The study area examined in this paper is the embankments enclosing the tributaries of the Pineios River in the Thessalian Plain region, specifically between the cities of Karditsa and Trikala in mainland Greece. This area was significantly affected in the summer of 2023 when flooding the region’s rivers destroyed urban elements and crops. The extent of the impact across the entire Thessalian Plain made managing the event highly challenging to the authorities. High-resolution 3D mapping and VR geovisualization of the embarkments encasing the main rivers and the tributaries of the Thessalian Plain essentially provides information for planning the area’s restoration processes and designing prevention and mitigation measures for similar disasters. The proposed methodology consists of four stages. The first and second stages of the methodology present the design of the data acquisition process with airborne LiDAR, aiming at the high-resolution 3D mapping of the sites. The third stage focuses on data processing, cloud point classification, and thematic information creation. The fourth stage is focused on developing the VR application. The VR application will allow users to immerse themselves in the study area, observe, and interact with the existing state of the embankments in high resolution. Additionally, users can interact with the 3D point cloud, where thematic information is displayed describing the classification of the 3D cloud, the altitude, and the RGB color. Additional thematic information in vector form, providing qualitative characteristics, is also illustrated in the virtual space. Furthermore, six different scenarios were visualized in the 3D space using a VR app. Visualizing these 3D scenarios using digital twins of the current antiflood infrastructure provides scenarios of floods at varying water levels. This study aims to explore the efficient visualization of thematic information in 3D virtual space. The goal is to provide an innovative VR tool for managing the impact on anthropogenic infrastructures, livestock, and the ecological capital of various scenarios of a catastrophic flood. |
---|---|
ISSN: | 2504-446X 2504-446X |
DOI: | 10.3390/drones8080398 |