A Rule-Based Energy Management Technique Considering Altitude Energy for a Mini UAV with a Hybrid Power System Consisting of Battery and Solar Cell
Nowadays, due to climate change and disappearance of fossil fuels, hybrid electric UAVs using renewable energy sources are being developed. In addition, although research on UAVs with a large wingspan and high weight is common due to their long endurance, research on mini UAVs has remained limited....
Saved in:
Published in | Energies (Basel) Vol. 17; no. 16; p. 4056 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Nowadays, due to climate change and disappearance of fossil fuels, hybrid electric UAVs using renewable energy sources are being developed. In addition, although research on UAVs with a large wingspan and high weight is common due to their long endurance, research on mini UAVs has remained limited. This study aims to increase the energy capacity of solar-powered mini UAVs and thus extend their endurance by developing a fixed-wing hybrid UAV that can fly with solar energy as much as possible, especially during the cruise phase. In this study, a solar-powered mini VTOL (vertical take-off and landing) UAV with a wingspan of 1.8 m and weight of 3.3 kg is developed and a model of the system consisting of solar cells, a battery, a super capacitor, and a DC/DC converter is created in MATLAB/Simulink software (R2023b). Additionally, state machine control (SMC), a rule-based (RB) energy management strategy (EMS), has been applied to this model. While the power obtained from the sun is divided among the other energy components, the durability of the UAV is increased, and the excess energy is stored as altitude energy to be used when necessary. As a result, in this study, an energy management algorithm including altitude energy has been successfully applied to a solar-powered UAV, achieving an 11.11% energy saving. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en17164056 |