Accumulation of Glomalin-Related Soil Protein Regulated by Plantation Types and Vertical Distribution of Soil Characteristics in Southern China

The glomalin-related soil protein (GRSP) is an important component of soil organic carbon (SOC), which plays an important role in maintaining soil structural stability, soil carbon (C), and nitrogen (N) fixation. However, little is known about the GRSP content in soil and its contribution to soil nu...

Full description

Saved in:
Bibliographic Details
Published inForests Vol. 15; no. 8; p. 1479
Main Authors Wu, Miaolan, Zhang, Shaochun, Gu, Xiaojuan, He, Zhihang, Liu, Yue, Mo, Qifeng
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The glomalin-related soil protein (GRSP) is an important component of soil organic carbon (SOC), which plays an important role in maintaining soil structural stability, soil carbon (C), and nitrogen (N) fixation. However, little is known about the GRSP content in soil and its contribution to soil nutrients in plantations of different tree species. In this study, we determined the soil physicochemical characteristics and GRSP contents in different soil layers of four kinds of plantations, including Acacia mangium (AM), Pinus caribaea (PC), Eucalyptus urophylla (EU), and Magnoliaceae glanca (MG), to address how the plantation types affected the GRSP in different layers of soil in southern China. The results showed that with an increase in soil depth, the GRSP content decreased linearly, and the contribution rate of GRSP to SOC and total nitrogen (TN) in deep soil was 1.08–1.18 times that in surface soil. The tree species significantly affected the vertical distribution of GRSP in soil. Among the four plantations, the conifer species PC had the highest level of GRSP, while the N-fixing species AM had the lowest level. However, SOC, soil capillary porosity (CP), TN, soil water content (SWC), and total phosphorus (TP) were important factors regulating soil GRSP content. Additionally, the regulation effects of soil properties on GRSP were various in surface and deep soil among different plantations. In order to improve soil quality and C sequestration potential, conifer species can be planted appropriately, or conifer species and N-fixing species can be mixed to increase soil nutrient content and enhance soil structure and function in afforestation of southern China.
ISSN:1999-4907
1999-4907
DOI:10.3390/f15081479