Event-Triggered L2−L∞ Exponential Consensus of Leader-Follower Multi-Agent Systems
This paper investigates the <inline-formula> <tex-math notation="LaTeX">\mathcal {L}_{2}-\mathcal {L}_{\infty } </tex-math></inline-formula> exponential consensus control problem of leader-follower multi-agent systems based on an event-triggered strategy. It begins...
Saved in:
Published in | IEEE access Vol. 12; pp. 56422 - 56430 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
IEEE
2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper investigates the <inline-formula> <tex-math notation="LaTeX">\mathcal {L}_{2}-\mathcal {L}_{\infty } </tex-math></inline-formula> exponential consensus control problem of leader-follower multi-agent systems based on an event-triggered strategy. It begins by establishing an error system and provides a sufficient condition guaranteeing exponential stability of the error system while satisfying the <inline-formula> <tex-math notation="LaTeX">\mathcal {L}_{2}-\mathcal {L}_{\infty } </tex-math></inline-formula> performance index. Subsequently, utilizing the condition, a design method for the <inline-formula> <tex-math notation="LaTeX">\mathcal {L}_{2}-\mathcal {L}_{\infty } </tex-math></inline-formula> controller is presented. Finally, through a numerical example, this paper discusses the relationship between optimal <inline-formula> <tex-math notation="LaTeX">\mathcal {L}_{2}-\mathcal {L}_{\infty } </tex-math></inline-formula> performance index and the maximum sampling period under different topological structures. The effectiveness of the proposed theoretical framework is validated through the numerical example. |
---|---|
ISSN: | 2169-3536 |
DOI: | 10.1109/ACCESS.2024.3383443 |