Performance analysis of Bayesian optimised gradient-boosted decision trees for digital elevation model (DEM) error correction: interim results

Gradient-Boosted Decision Trees (GBDTs), particularly when tuned with Bayesian optimisation, are powerful machine learning techniques known for their effectiveness in handling complex, non-linear data. However, the performance of these models can be significantly influenced by the characteristics of...

Full description

Saved in:
Bibliographic Details
Published inISPRS annals of the photogrammetry, remote sensing and spatial information sciences Vol. X-2-2024; pp. 179 - 183
Main Authors Okolie, Chukwuma, Adeleke, Adedayo, Smit, Julian, Mills, Jon, Ogbeta, Caleb, Iyke Maduako
Format Journal Article
LanguageEnglish
Published Gottingen Copernicus GmbH 01.01.2024
Copernicus Publications
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Gradient-Boosted Decision Trees (GBDTs), particularly when tuned with Bayesian optimisation, are powerful machine learning techniques known for their effectiveness in handling complex, non-linear data. However, the performance of these models can be significantly influenced by the characteristics of the terrain being analysed. In this study, we assess the performance of three Bayesian-optimised GBDTs (XGBoost, LightGBM and CatBoost) using digital elevation model (DEM) error correction as a case study. The performance of the models is investigated across five landscapes in Cape Town South Africa: urban/industrial, agricultural, mountain, peninsula and grassland/shrubland. The models were trained using a selection of datasets (elevation, terrain parameters and land cover). The comparison entailed an analysis of the model execution times, regression error metrics, and level of improvement in the corrected DEMs. Generally, the optimised models performed considerably well and demonstrated excellent predictive capability. CatBoost emerged with the best results in the level of improvement recorded in the corrected DEMs, while LightGBM was the fastest of all models in the execution time for Bayesian optimisation and model training. These findings offer valuable insights for applying machine learning and hyperparameter tuning in remote sensing.
AbstractList Gradient-Boosted Decision Trees (GBDTs), particularly when tuned with Bayesian optimisation, are powerful machine learning techniques known for their effectiveness in handling complex, non-linear data. However, the performance of these models can be significantly influenced by the characteristics of the terrain being analysed. In this study, we assess the performance of three Bayesian-optimised GBDTs (XGBoost, LightGBM and CatBoost) using digital elevation model (DEM) error correction as a case study. The performance of the models is investigated across five landscapes in Cape Town South Africa: urban/industrial, agricultural, mountain, peninsula and grassland/shrubland. The models were trained using a selection of datasets (elevation, terrain parameters and land cover). The comparison entailed an analysis of the model execution times, regression error metrics, and level of improvement in the corrected DEMs. Generally, the optimised models performed considerably well and demonstrated excellent predictive capability. CatBoost emerged with the best results in the level of improvement recorded in the corrected DEMs, while LightGBM was the fastest of all models in the execution time for Bayesian optimisation and model training. These findings offer valuable insights for applying machine learning and hyperparameter tuning in remote sensing.
Author Adeleke, Adedayo
Smit, Julian
Ogbeta, Caleb
Iyke Maduako
Okolie, Chukwuma
Mills, Jon
Author_xml – sequence: 1
  givenname: Chukwuma
  surname: Okolie
  fullname: Okolie, Chukwuma
– sequence: 2
  givenname: Adedayo
  surname: Adeleke
  fullname: Adeleke, Adedayo
– sequence: 3
  givenname: Julian
  surname: Smit
  fullname: Smit, Julian
– sequence: 4
  givenname: Jon
  surname: Mills
  fullname: Mills, Jon
– sequence: 5
  givenname: Caleb
  surname: Ogbeta
  fullname: Ogbeta, Caleb
– sequence: 6
  fullname: Iyke Maduako
BookMark eNo9kd1qHDEMhU1IIWmadzAESnrh1iPbM-Pe5bcNpLQXLeRu0Iw1i8OsvbG9gX2JPnO8SemVDueITxJ6zw5DDMTYx0Z-No3VX3zepCwwBFyyeBAgQIIWTWdfxQE7htolrDTy8L_WcMROc_aj1LrTAG13zP7-ojTHtMYwEcdK22WfeZz5Je4oeww8bopf-0yOrxI6T6GIMcZcquFo8tnHwEsiyrxyuPMrX3DhtNAzln22jo4Wfn598-MTp5RqzxRTomkffuU-FEp-zRPl7VLyB_ZurhfR6b96wv7c3vy--i7uf367u7q4Fw6UKUK1qkGUzaS6nhT0ndOuR0ME4LTBRo6jdi31QMrp1rTtZMk6GhX1BgiNOmF3b1wX8XHY1A0w7YaIfng1YloNmIqfFhqMM9BgD3ZuZj0psgpGaGcEh6Ou4yrr7I21SfFpS7kMj3Gb9o8ZlGxNL62VnXoBWd2JkA
ContentType Journal Article
Copyright 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
HCIFZ
L6V
M7S
PCBAR
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.5194/isprs-annals-X-2-2024-179-2024
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Earth, Atmospheric & Aquatic Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
EISSN 2194-9050
EndPage 183
ExternalDocumentID oai_doaj_org_article_5d521a829f1f4c3e932b26fa2dab42d4
GroupedDBID 5VS
8FE
8FG
8FH
AAFWJ
ABJCF
ABUWG
ACIWK
ADBBV
AFKRA
AFPKN
AHGZY
ALMA_UNASSIGNED_HOLDINGS
ARCSS
AZQEC
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
GROUPED_DOAJ
HCIFZ
KQ8
L6V
LK5
M7R
M7S
PCBAR
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PROAC
PTHSS
RKB
TUS
ID FETCH-LOGICAL-d235t-3631aa01c378e3287d4d8a5ee22d45a10bb4d6e82e3d46566c9e9deb3e852ea53
IEDL.DBID BENPR
ISSN 2194-9042
IngestDate Tue Oct 22 15:14:13 EDT 2024
Thu Oct 10 19:13:51 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d235t-3631aa01c378e3287d4d8a5ee22d45a10bb4d6e82e3d46566c9e9deb3e852ea53
OpenAccessLink https://www.proquest.com/docview/3065809907?pq-origsite=%requestingapplication%
PQID 3065809907
PQPubID 2037681
PageCount 5
ParticipantIDs doaj_primary_oai_doaj_org_article_5d521a829f1f4c3e932b26fa2dab42d4
proquest_journals_3065809907
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Gottingen
PublicationPlace_xml – name: Gottingen
PublicationTitle ISPRS annals of the photogrammetry, remote sensing and spatial information sciences
PublicationYear 2024
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
SSID ssib044742267
ssj0001759992
Score 2.2898614
Snippet Gradient-Boosted Decision Trees (GBDTs), particularly when tuned with Bayesian optimisation, are powerful machine learning techniques known for their...
SourceID doaj
proquest
SourceType Open Website
Aggregation Database
StartPage 179
SubjectTerms Bayesian analysis
Decision trees
Digital Elevation Models
Elevation
Error analysis
Error correction
Error correction & detection
Grasslands
Land cover
Machine learning
Optimization
Performance assessment
Regression models
Remote sensing
Terrain
Urban agriculture
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQBwQHBAVUKEVzqFA5WOz6I4m5FQRClYo4lGpv0WQ9QSuV3VWSPfRP8JuZcVKB1EMv3CIrciK_sf3G43mj1JcCbW4tWc3srdKODGp0hnRRx8D0GdGlUMyPu-z2wX2f-MmbUl9yJ6yXB-4H7txH3mCwMKEe125qiflGZbIaTcTKmdgrgY7CG2eKLcm5XDJE89fTltwzE5KQAs9QpwOb6oY65RWDCYw7n7XLptWYFIv1RBs2HeNEuDM9DGr-_yzWaQe62VHbA3WEb_0v76o1mn9QW79m7apvbffU8_1rHgDgoDcCixou8Q9JuiQseIlgaCnCY5Nue3WaebaceUIcyu2ABKpb4H4gzh6lqAhIEnqCEFLlHPjK8J0BNQ2_M5X6Hik74gJEfKKZPQH78KvfXbuvHm6uf17d6qHigo7G-k7bzI4RR-OpzQuy7ExFFwv0RIZH2uN4VFUuZlQYslGE1rJpoBDZH6fCG0JvD9T6fDGnjwpiEcThFbV-dnEcBeYW3qNFl8XAG-KhupRRLZe9qEYpMtepgcEvB_DL_4F_qI7_YlIOc68trbAqifflR-_xjU9qM5lDOnY5Vutds6LPTES66iTZ3Audl9oQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Performance analysis of Bayesian optimised gradient-boosted decision trees for digital elevation model (DEM) error correction: interim results
URI https://www.proquest.com/docview/3065809907
https://doaj.org/article/5d521a829f1f4c3e932b26fa2dab42d4
Volume X-2-2024
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Na9tAEF0aB0p7KP2kSVOzh1LawxJ7P6RVL6UudkMhIZSm-CZG3pExpJYryYdc-hP6mzuzXuNDoRchJCGEZnb0ZkbznhBvPJjcGDSK0FulLGpQYDUqX4eC4DOAja2Yy6vs4sZ-nbt5Krh16bfKfUyMgTo0C66Rn7PCuecuTv5x80uxahR3V5OExpE41pQpjAbieDK9uv629yhrc54UzQ9Vl9wRIuLWAq1Uqwpy2fviLUUOAjL2fNVt2k5BZC5Wc6XJhbRlAs-4k1j9_wna8Us0eyweJQgpP-1s_kTcw_VT8fDHqtvujnbPxJ_rwzyAhMQ7IptaTuAOeWxSNhQqyMQY5LKNf331ivA21z5lSLI7khvWnaT7yLBasriI5GH0aEoZFXTkOzLje4ltS9csWOcjTkl8kExC0a5-Ssrlt7d991zczKbfP1-opLyggjauVyYzY4DReGFyj4aSqmCDB4eodbAOxqOqsiFDr9EEJlzLFgUWgfJy9E4jOPNCDNbNGl8KGXzBiS-z9lOqY7EgjOEcGLBZKOjDeCIm_FbLzY5co2S663igaZdlWj2lC4QywOuiHtd2YZBAZ6WzGnSAytIjnYizvU3KtAa78uAxp_8__Uo8iIaOhZUzMejbLb4mqNFXQ3HkZ1-GyauGMWGn7eXv6V_na9Wc
link.rule.ids 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,43612,43817
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9NAEF1BkaA9VHxVFArsASE4rNrsh73mglpECNBWHFqUmzX2jqNINA62c-if4Dczs9koByRulm1Zlmd29s2M5z0h3ngwuTFoFKG3SlnUoMBqVL4JBcFnABtbMReX2eTafpu6aSq49em3yk1MjIE6tDXXyI9Z4dxzFyf_uPytWDWKu6tJQuOuuGcN7dU8KT7-svEna3OeE823NZfcER7ixgKtU6sKctj74i3FDYIx9njeL7teQeQtVlOlyYG0ZfrOeJA4_f8J2XEfGj8U-wlAytO1xR-JO7h4LPZ-zvvV-mz_RPz5sZ0GkJBYR2TbyDO4RR6alC0FCjIwBjnr4j9fgyK0zZVPGZLojuR2dS_pOTLMZywtInkUPRpSRv0c-Y6M-F5i19E9Nat8xBmJD5IpKLr5jaRMfvVr6J-K6_Hnq08TlXQXVNDGDcpkZgRwMqpN7tFQShVs8OAQtQ7WweikqmzI0Gs0genWsrrAIlBWjt5pBGcOxM6iXeAzIYMvOO1lzn5KdCwWhDCcAwM2CwVti4fijL9quVxTa5RMdh1PtN2sTGundIEwBnhdNKPG1gYJclY6a0AHqCy90qE42tikTCuwL7f-8vz_l1-LB5Ori_Py_Ovl9xdiNxo9lliOxM7QrfAlgY6hehU96y96n9Qb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+analysis+of+Bayesian+optimised+gradient-boosted+decision+trees+for+digital+elevation+model+%28DEM%29+error+correction%3A+interim+results&rft.jtitle=ISPRS+annals+of+the+photogrammetry%2C+remote+sensing+and+spatial+information+sciences&rft.au=Okolie%2C+Chukwuma&rft.au=Adeleke%2C+Adedayo&rft.au=Smit%2C+Julian&rft.au=Mills%2C+Jon&rft.date=2024-01-01&rft.pub=Copernicus+GmbH&rft.issn=2194-9042&rft.eissn=2194-9050&rft.volume=X-2-2024&rft.spage=179&rft.epage=183&rft_id=info:doi/10.5194%2Fisprs-annals-X-2-2024-179-2024
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2194-9042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2194-9042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2194-9042&client=summon