Performance analysis of Bayesian optimised gradient-boosted decision trees for digital elevation model (DEM) error correction: interim results
Gradient-Boosted Decision Trees (GBDTs), particularly when tuned with Bayesian optimisation, are powerful machine learning techniques known for their effectiveness in handling complex, non-linear data. However, the performance of these models can be significantly influenced by the characteristics of...
Saved in:
Published in | ISPRS annals of the photogrammetry, remote sensing and spatial information sciences Vol. X-2-2024; pp. 179 - 183 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Gottingen
Copernicus GmbH
01.01.2024
Copernicus Publications |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Gradient-Boosted Decision Trees (GBDTs), particularly when tuned with Bayesian optimisation, are powerful machine learning techniques known for their effectiveness in handling complex, non-linear data. However, the performance of these models can be significantly influenced by the characteristics of the terrain being analysed. In this study, we assess the performance of three Bayesian-optimised GBDTs (XGBoost, LightGBM and CatBoost) using digital elevation model (DEM) error correction as a case study. The performance of the models is investigated across five landscapes in Cape Town South Africa: urban/industrial, agricultural, mountain, peninsula and grassland/shrubland. The models were trained using a selection of datasets (elevation, terrain parameters and land cover). The comparison entailed an analysis of the model execution times, regression error metrics, and level of improvement in the corrected DEMs. Generally, the optimised models performed considerably well and demonstrated excellent predictive capability. CatBoost emerged with the best results in the level of improvement recorded in the corrected DEMs, while LightGBM was the fastest of all models in the execution time for Bayesian optimisation and model training. These findings offer valuable insights for applying machine learning and hyperparameter tuning in remote sensing. |
---|---|
AbstractList | Gradient-Boosted Decision Trees (GBDTs), particularly when tuned with Bayesian optimisation, are powerful machine learning techniques known for their effectiveness in handling complex, non-linear data. However, the performance of these models can be significantly influenced by the characteristics of the terrain being analysed. In this study, we assess the performance of three Bayesian-optimised GBDTs (XGBoost, LightGBM and CatBoost) using digital elevation model (DEM) error correction as a case study. The performance of the models is investigated across five landscapes in Cape Town South Africa: urban/industrial, agricultural, mountain, peninsula and grassland/shrubland. The models were trained using a selection of datasets (elevation, terrain parameters and land cover). The comparison entailed an analysis of the model execution times, regression error metrics, and level of improvement in the corrected DEMs. Generally, the optimised models performed considerably well and demonstrated excellent predictive capability. CatBoost emerged with the best results in the level of improvement recorded in the corrected DEMs, while LightGBM was the fastest of all models in the execution time for Bayesian optimisation and model training. These findings offer valuable insights for applying machine learning and hyperparameter tuning in remote sensing. |
Author | Adeleke, Adedayo Smit, Julian Ogbeta, Caleb Iyke Maduako Okolie, Chukwuma Mills, Jon |
Author_xml | – sequence: 1 givenname: Chukwuma surname: Okolie fullname: Okolie, Chukwuma – sequence: 2 givenname: Adedayo surname: Adeleke fullname: Adeleke, Adedayo – sequence: 3 givenname: Julian surname: Smit fullname: Smit, Julian – sequence: 4 givenname: Jon surname: Mills fullname: Mills, Jon – sequence: 5 givenname: Caleb surname: Ogbeta fullname: Ogbeta, Caleb – sequence: 6 fullname: Iyke Maduako |
BookMark | eNo9kd1qHDEMhU1IIWmadzAESnrh1iPbM-Pe5bcNpLQXLeRu0Iw1i8OsvbG9gX2JPnO8SemVDueITxJ6zw5DDMTYx0Z-No3VX3zepCwwBFyyeBAgQIIWTWdfxQE7htolrDTy8L_WcMROc_aj1LrTAG13zP7-ojTHtMYwEcdK22WfeZz5Je4oeww8bopf-0yOrxI6T6GIMcZcquFo8tnHwEsiyrxyuPMrX3DhtNAzln22jo4Wfn598-MTp5RqzxRTomkffuU-FEp-zRPl7VLyB_ZurhfR6b96wv7c3vy--i7uf367u7q4Fw6UKUK1qkGUzaS6nhT0ndOuR0ME4LTBRo6jdi31QMrp1rTtZMk6GhX1BgiNOmF3b1wX8XHY1A0w7YaIfng1YloNmIqfFhqMM9BgD3ZuZj0psgpGaGcEh6Ou4yrr7I21SfFpS7kMj3Gb9o8ZlGxNL62VnXoBWd2JkA |
ContentType | Journal Article |
Copyright | 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO HCIFZ L6V M7S PCBAR PIMPY PQEST PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.5194/isprs-annals-X-2-2024-179-2024 |
DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database Earth, Atmospheric & Aquatic Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest Engineering Collection ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic Engineering Collection |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Visual Arts |
EISSN | 2194-9050 |
EndPage | 183 |
ExternalDocumentID | oai_doaj_org_article_5d521a829f1f4c3e932b26fa2dab42d4 |
GroupedDBID | 5VS 8FE 8FG 8FH AAFWJ ABJCF ABUWG ACIWK ADBBV AFKRA AFPKN AHGZY ALMA_UNASSIGNED_HOLDINGS ARCSS AZQEC BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO GROUPED_DOAJ HCIFZ KQ8 L6V LK5 M7R M7S PCBAR PIMPY PQEST PQQKQ PQUKI PRINS PROAC PTHSS RKB TUS |
ID | FETCH-LOGICAL-d235t-3631aa01c378e3287d4d8a5ee22d45a10bb4d6e82e3d46566c9e9deb3e852ea53 |
IEDL.DBID | BENPR |
ISSN | 2194-9042 |
IngestDate | Tue Oct 22 15:14:13 EDT 2024 Thu Oct 10 19:13:51 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-d235t-3631aa01c378e3287d4d8a5ee22d45a10bb4d6e82e3d46566c9e9deb3e852ea53 |
OpenAccessLink | https://www.proquest.com/docview/3065809907?pq-origsite=%requestingapplication% |
PQID | 3065809907 |
PQPubID | 2037681 |
PageCount | 5 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5d521a829f1f4c3e932b26fa2dab42d4 proquest_journals_3065809907 |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Gottingen |
PublicationPlace_xml | – name: Gottingen |
PublicationTitle | ISPRS annals of the photogrammetry, remote sensing and spatial information sciences |
PublicationYear | 2024 |
Publisher | Copernicus GmbH Copernicus Publications |
Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
SSID | ssib044742267 ssj0001759992 |
Score | 2.2898614 |
Snippet | Gradient-Boosted Decision Trees (GBDTs), particularly when tuned with Bayesian optimisation, are powerful machine learning techniques known for their... |
SourceID | doaj proquest |
SourceType | Open Website Aggregation Database |
StartPage | 179 |
SubjectTerms | Bayesian analysis Decision trees Digital Elevation Models Elevation Error analysis Error correction Error correction & detection Grasslands Land cover Machine learning Optimization Performance assessment Regression models Remote sensing Terrain Urban agriculture |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQBwQHBAVUKEVzqFA5WOz6I4m5FQRClYo4lGpv0WQ9QSuV3VWSPfRP8JuZcVKB1EMv3CIrciK_sf3G43mj1JcCbW4tWc3srdKODGp0hnRRx8D0GdGlUMyPu-z2wX2f-MmbUl9yJ6yXB-4H7txH3mCwMKEe125qiflGZbIaTcTKmdgrgY7CG2eKLcm5XDJE89fTltwzE5KQAs9QpwOb6oY65RWDCYw7n7XLptWYFIv1RBs2HeNEuDM9DGr-_yzWaQe62VHbA3WEb_0v76o1mn9QW79m7apvbffU8_1rHgDgoDcCixou8Q9JuiQseIlgaCnCY5Nue3WaebaceUIcyu2ABKpb4H4gzh6lqAhIEnqCEFLlHPjK8J0BNQ2_M5X6Hik74gJEfKKZPQH78KvfXbuvHm6uf17d6qHigo7G-k7bzI4RR-OpzQuy7ExFFwv0RIZH2uN4VFUuZlQYslGE1rJpoBDZH6fCG0JvD9T6fDGnjwpiEcThFbV-dnEcBeYW3qNFl8XAG-KhupRRLZe9qEYpMtepgcEvB_DL_4F_qI7_YlIOc68trbAqifflR-_xjU9qM5lDOnY5Vutds6LPTES66iTZ3Audl9oQ priority: 102 providerName: Directory of Open Access Journals |
Title | Performance analysis of Bayesian optimised gradient-boosted decision trees for digital elevation model (DEM) error correction: interim results |
URI | https://www.proquest.com/docview/3065809907 https://doaj.org/article/5d521a829f1f4c3e932b26fa2dab42d4 |
Volume | X-2-2024 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Na9tAEF0aB0p7KP2kSVOzh1LawxJ7P6RVL6UudkMhIZSm-CZG3pExpJYryYdc-hP6mzuzXuNDoRchJCGEZnb0ZkbznhBvPJjcGDSK0FulLGpQYDUqX4eC4DOAja2Yy6vs4sZ-nbt5Krh16bfKfUyMgTo0C66Rn7PCuecuTv5x80uxahR3V5OExpE41pQpjAbieDK9uv629yhrc54UzQ9Vl9wRIuLWAq1Uqwpy2fviLUUOAjL2fNVt2k5BZC5Wc6XJhbRlAs-4k1j9_wna8Us0eyweJQgpP-1s_kTcw_VT8fDHqtvujnbPxJ_rwzyAhMQ7IptaTuAOeWxSNhQqyMQY5LKNf331ivA21z5lSLI7khvWnaT7yLBasriI5GH0aEoZFXTkOzLje4ltS9csWOcjTkl8kExC0a5-Ssrlt7d991zczKbfP1-opLyggjauVyYzY4DReGFyj4aSqmCDB4eodbAOxqOqsiFDr9EEJlzLFgUWgfJy9E4jOPNCDNbNGl8KGXzBiS-z9lOqY7EgjOEcGLBZKOjDeCIm_FbLzY5co2S663igaZdlWj2lC4QywOuiHtd2YZBAZ6WzGnSAytIjnYizvU3KtAa78uAxp_8__Uo8iIaOhZUzMejbLb4mqNFXQ3HkZ1-GyauGMWGn7eXv6V_na9Wc |
link.rule.ids | 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,43612,43817 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9NAEF1BkaA9VHxVFArsASE4rNrsh73mglpECNBWHFqUmzX2jqNINA62c-if4Dczs9koByRulm1Zlmd29s2M5z0h3ngwuTFoFKG3SlnUoMBqVL4JBcFnABtbMReX2eTafpu6aSq49em3yk1MjIE6tDXXyI9Z4dxzFyf_uPytWDWKu6tJQuOuuGcN7dU8KT7-svEna3OeE823NZfcER7ixgKtU6sKctj74i3FDYIx9njeL7teQeQtVlOlyYG0ZfrOeJA4_f8J2XEfGj8U-wlAytO1xR-JO7h4LPZ-zvvV-mz_RPz5sZ0GkJBYR2TbyDO4RR6alC0FCjIwBjnr4j9fgyK0zZVPGZLojuR2dS_pOTLMZywtInkUPRpSRv0c-Y6M-F5i19E9Nat8xBmJD5IpKLr5jaRMfvVr6J-K6_Hnq08TlXQXVNDGDcpkZgRwMqpN7tFQShVs8OAQtQ7WweikqmzI0Gs0genWsrrAIlBWjt5pBGcOxM6iXeAzIYMvOO1lzn5KdCwWhDCcAwM2CwVti4fijL9quVxTa5RMdh1PtN2sTGundIEwBnhdNKPG1gYJclY6a0AHqCy90qE42tikTCuwL7f-8vz_l1-LB5Ori_Py_Ovl9xdiNxo9lliOxM7QrfAlgY6hehU96y96n9Qb |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+analysis+of+Bayesian+optimised+gradient-boosted+decision+trees+for+digital+elevation+model+%28DEM%29+error+correction%3A+interim+results&rft.jtitle=ISPRS+annals+of+the+photogrammetry%2C+remote+sensing+and+spatial+information+sciences&rft.au=Okolie%2C+Chukwuma&rft.au=Adeleke%2C+Adedayo&rft.au=Smit%2C+Julian&rft.au=Mills%2C+Jon&rft.date=2024-01-01&rft.pub=Copernicus+GmbH&rft.issn=2194-9042&rft.eissn=2194-9050&rft.volume=X-2-2024&rft.spage=179&rft.epage=183&rft_id=info:doi/10.5194%2Fisprs-annals-X-2-2024-179-2024 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2194-9042&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2194-9042&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2194-9042&client=summon |