Protocatechuic Acid from Euonymus alatus Mitigates Scopolamine-Induced Memory Impairment in Mice

The increasing prevalence of age-related neurodegenerative disorders owing to the aging population worldwide poses substantial challenges. This study investigated the neuroprotective effects of protocatechuic acid (PCA), a compound found in various fruits, vegetables, and grains, using a scopolamine...

Full description

Saved in:
Bibliographic Details
Published inFoods Vol. 13; no. 17; p. 2664
Main Authors Kim, Yoonsu, Cho, Minjung, Lee, Jeong Soon, Oh, Jisun, Lim, Jinkyu
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 23.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The increasing prevalence of age-related neurodegenerative disorders owing to the aging population worldwide poses substantial challenges. This study investigated the neuroprotective effects of protocatechuic acid (PCA), a compound found in various fruits, vegetables, and grains, using a scopolamine-induced hypomnesia mouse model. Six-week-old male C57BL/6J mice were orally administered PCA at doses of 10 and 100 mg/kg body weight per day for two weeks, along with intraperitoneal injections of scopolamine. Learning and memory abilities were assessed using the passive avoidance, Morris water maze, and Y-maze behavioral assays. Biochemical analyses evaluated the levels of oxidative stress markers, including 8-hydroxydeoxyguanosine (8-OHdG) in the blood and malondialdehyde (MDA) in the brain, as well as phase II antioxidant proteins in the hippocampus. Histological examination was conducted to determine hippocampal integrity. Our results demonstrated that PCA administration at 10 mg/kg body weight per day or higher for two weeks (i) significantly ameliorated scopolamine-induced learning and memory impairments, as evidenced by improved performance in behavioral tasks, (ii) reduced plasma 8-OHdG levels and cerebral MDA levels in a dose-dependent manner, (iii) increased antioxidant protein expressions in the hippocampal tissue, and (iv) mitigated histological damage in the hippocampal region of the brain. These findings suggest that oral administration of PCA provides neuroprotective effects against oxidative stress-induced learning and memory impairments, possibly through upregulating antioxidant machinery. Therefore, PCA may serve as a promising dietary supplement for mitigating cognitive deficits associated with neurodegenerative diseases.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2304-8158
2304-8158
DOI:10.3390/foods13172664