Enhancing Traffic Flow Forecasting with Deep-Learning and Noise Reduction Techniques
Traditional short-term traffic volume forecasting approaches make it difficult to predict the highly spatiotemporally coupled short-time traffic. To tackle the problem, this paper first proposes a variational modal algorithm (GWO-VMD) based on the optimization of the gray wolf search algorithm. It a...
Saved in:
Published in | Discrete dynamics in nature and society Vol. 2024 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
John Wiley & Sons, Inc
26.08.2024
Hindawi Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Traditional short-term traffic volume forecasting approaches make it difficult to predict the highly spatiotemporally coupled short-time traffic. To tackle the problem, this paper first proposes a variational modal algorithm (GWO-VMD) based on the optimization of the gray wolf search algorithm. It aims to decompose and reduce the noise of short-time traffic flows. Meanwhile, it reduces the intricacy of data sequences and enhances the regularity pattern. To address the insufficient utilization of spatiotemporal features, this paper presents an innovative deep-learning traffic prediction framework based on the stacking of multiple temporal trend-aware graph attention (TGA) layers and gated temporal convolution (GTC) layers, which are called trend-aware temporal graph neural network (TTGAN). TGA dynamically models the space-time relationships of traffic data, and GTC models the temporal characteristics of traffic data. The experimental findings demonstrate that the MAPE model, as presented, achieves a reduction of 9% and 2% compared to the AGCRN and GWNET models, respectively, in the domain of deep spatiotemporal graph modeling. Data decomposition and noise reduction are necessary to achieve accurate results. This model has superior performance in terms of mean absolute error (MAE), coefficient of determination (R2), and explained variance score (EVAR). |
---|---|
ISSN: | 1026-0226 1607-887X |
DOI: | 10.1155/2024/1928189 |