The cluster analysis in the aluminium industry with K-means method: an application for Bahrain
This study examines the utilization of the K-means clustering method to analyze Bahrain’s aluminum industry. In addition, this study emphasizes the importance of clustering in understanding productivity, quality, and competitiveness within the sector. Data collection involved rigorous cleaning of di...
Saved in:
Published in | Cogent business & management Vol. 11; no. 1 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Taylor & Francis Group
31.12.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This study examines the utilization of the K-means clustering method to analyze Bahrain’s aluminum industry. In addition, this study emphasizes the importance of clustering in understanding productivity, quality, and competitiveness within the sector. Data collection involved rigorous cleaning of diverse sources to ensure accuracy. By employing the K-means algorithm, this study successfully identified distinct clusters within the dataset, offering insights into industry dynamics. In addition, it proposes a roadmap for cluster development, providing actionable recommendations for stakeholders to enhance competitiveness and sustainability. Overall, this research advances knowledge of clustering techniques and informs strategic decision-making in Bahrain’s aluminum industry. |
---|---|
ISSN: | 2331-1975 |
DOI: | 10.1080/23311975.2024.2361475 |