Progress and Application of Bayesian Approach in the Early Research and Development of New Anticancer Drugs
贝叶斯学派是通过综合未知参数的先验信息与样本信息,依据贝叶斯定理,求出后验分布,根据后验分布推断未知参数的统计方法。相比频率派,贝叶斯学派更加灵活、高效。肿瘤新药是全球研发的热点,但同时也存在高失败率的风险。在肿瘤新药早期研发中,高效寻找最佳剂量、优势人群、估计疗效和成功率是医药企业和研究者的共同需求。近年来,肿瘤新药研发呈现化学药物生物制品转变、单药治疗向联合治疗转变、传统设计向创新设计转变等新趋势;伴随出现的各种挑战,包括无法找到最高耐受剂量、延迟毒性、延迟反应、剂量疗效关系变化、剂量组合众多等。基于贝叶斯方法,恰当借用先验信息,能有效帮助企业在肿瘤早期研发中,实现从传统研发模式(高投入、...
Saved in:
Published in | Zhongguo fei ai za zhi Vol. 25; no. 10; pp. 730 - 734 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | Chinese |
Published |
Tianjin
Chinese Anti-Cancer Association Chinese Antituberculosis Association
01.10.2022
Chinese Anti-Cancer Association; Chinese Antituberculosis Association |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | 贝叶斯学派是通过综合未知参数的先验信息与样本信息,依据贝叶斯定理,求出后验分布,根据后验分布推断未知参数的统计方法。相比频率派,贝叶斯学派更加灵活、高效。肿瘤新药是全球研发的热点,但同时也存在高失败率的风险。在肿瘤新药早期研发中,高效寻找最佳剂量、优势人群、估计疗效和成功率是医药企业和研究者的共同需求。近年来,肿瘤新药研发呈现化学药物生物制品转变、单药治疗向联合治疗转变、传统设计向创新设计转变等新趋势;伴随出现的各种挑战,包括无法找到最高耐受剂量、延迟毒性、延迟反应、剂量疗效关系变化、剂量组合众多等。基于贝叶斯方法,恰当借用先验信息,能有效帮助企业在肿瘤早期研发中,实现从传统研发模式(高投入、长周期、低效率)向现代研发模式(低投入、短周期、高效率)的转变。研究还进行了贝叶斯方法在肿瘤新药早期研发的进展阐述,与频率派的理念、应用场景的比较分析,可为医药研发的所有从业人员提供宏观、系统的参考。 Bayesian statistics is an approach for learning from evidences as it accumulates, combining prior distribution with current information on a quantity of interest, in which posterior distribution and inferences are being updated each time new data become available using Bayes’ Theorem. Though frequentist approach has dominated medical studies, Bayesian approach has been more and more widely recognized by its flexibility and efficiency. Research and development (R&D) on anti-cancer new drugs have been so hot globally in recent years in spite of relatively high failure rate. It is the common demand of pharmaceutical en |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1009-3419 1999-6187 |
DOI: | 10.3779/j.issn.1009-3419.2022.102.43 |