Atmospheric CO2 monitoring with single-cell NDIR-based analyzers
We describe CO2 concentration measurement systems based on relatively inexpensive single-cell non-dispersive infrared CO2 sensors. The systems utilize signal averaging to obtain precision (1-σ in 100 s) of 0.1 parts per million dry air mole fraction (ppm), frequent calibrations and sample drying in...
Saved in:
Published in | Atmospheric measurement techniques Vol. 4; no. 12; pp. 2737 - 2748 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Katlenburg-Lindau
Copernicus GmbH
01.12.2011
Copernicus Publications |
Online Access | Get full text |
Cover
Loading…
Summary: | We describe CO2 concentration measurement systems based on relatively inexpensive single-cell non-dispersive infrared CO2 sensors. The systems utilize signal averaging to obtain precision (1-σ in 100 s) of 0.1 parts per million dry air mole fraction (ppm), frequent calibrations and sample drying in order to achieve state-of-the-art compatibility, and can run autonomously for months at a time. Laboratory tests indicate compatibility among four to six systems to be ±0.1 ppm (1-σ), and field measurements of known reference-gases yield median errors of 0.01 to 0.17 ppm with 1-σ variance of ±0.1 to 0.2 ppm. From May to August 2007, a system co-located with a NOAA-ESRL dual-cell NDIR system at the WLEF tall tower in Wisconsin measured daytime-only daily averages of CO2 that differ by 0.26 ± 0.15 ppm (median ± 1 σ), and from August 2005 to April 2011 a system co-located with weekly NOAA-ESRL network flask collection at Niwot Ridge, Colorado measured coincident CO2 concentrations that differed by -0.06 ± 0.30 ppm (n = 585). Data from these systems are now supporting a wide range of analyses and this approach may be applicable in future studies where accuracy and initial cost of the sensors are priorities. |
---|---|
ISSN: | 1867-1381 1867-8548 |
DOI: | 10.5194/amt-4-2737-2011 |