Effect of heat input on microstructure and mechanical properties of laser welded joint of Inconel 617 nickel-based superalloy

Inconel 617 nickel-based superalloy with 3 mm wall thickness was welded by laser beam using two different heat input welding parameters. The microstructure of the welded joint was observed by optical microscope and scanning electron microscope, and the mechanical properties of the welded joint at ro...

Full description

Saved in:
Bibliographic Details
Published inCai liao gong cheng = Journal of materials engineering Vol. 51; no. 1; pp. 113 - 121
Main Authors Cheng, Hao, Zhou, Liangang, Liu, Jian, Wang, Yuning, Tong, Lingyun, Du, Dong
Format Journal Article
LanguageChinese
English
Published Beijing Beijing Institute of Aeronautical Materials 01.01.2023
Journal of Materials Engineering
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Inconel 617 nickel-based superalloy with 3 mm wall thickness was welded by laser beam using two different heat input welding parameters. The microstructure of the welded joint was observed by optical microscope and scanning electron microscope, and the mechanical properties of the welded joint at room temperature (25℃) and high temperature (900℃) were tested. The results show that the laser welding heat input has a significant effect on the microstructure and mechanical properties of Inconel 617 welded joints. The front width of the laser weld obtained by high heat input (200 J/mm) process parameters is 3.88 mm. The grain size in the middle of the weld fusion zone is coarse, and the grain orientation is disordered. The secondary dendrite arm spacing in the middle of the weld is large (6.71 μm). The carbide particle size between the dendrites is coarse, and the solidification microsegregation of Mo, Cr alloy elements is serious. The width of heat affected zone is about 0.29 mm. The eutectic structure of γ+carbide is formed in the grain boundary and grain interior. This is because during the heating process of the welding, the spherical carbide particles and the surrounding austenite in the heat-affected zone liquefy and the eutectic structure is formed during the solidification process after welding. The front width of the laser weld obtained by low heat input (90 J/mm) process parameters is 2.28 mm, the grains inside the weld are columnar which is formed by epitaxial growth along the fusion line and directional solidification along the heat flow direction. The secondary dendrite arm spacing in the middle of the weld is small (2.26 μm), the carbide particles between dendrites are small, and the width of heat affected zone is about 0.15 mm. The tensile strength test at room temperature (25℃) shows that the welded joints obtained under high heat input fracture from the middle of the weld, and the tensile strength and elongation decrease, which is caused by the segregation of solid solution elements in the weld. The welded joints obtained under low heat input fracture from the base metal. At high temperature (900℃), all samples fracture from the base metal, which is due to the weakening of the grain boundary of the base metal at high temperatures.
ISSN:1001-4381
DOI:10.11868/j.issn.1001-4381.2021.000790