Automation and Optimization of Industrial Scale Essential Oil Extraction from Citrus Peel Using a Neutrosophic Control System Model

The extraction of essential oils in the world is widely used to combat various diseases, and also helps for giving a good taste to food (flavoring condiments) and cosmetics that do not pollute the environment or generate chemicals. Peru is in the top 10 countries with the greatest biological diversi...

Full description

Saved in:
Bibliographic Details
Published inNeutrosophic sets and systems Vol. 62; pp. 11 - 19
Main Authors Beraun-Espiritu, Manuel Michael, Moscoso-Paucarchuco, Ketty Marilu, Espinoza-Quispe, Luis Enrique, Moreno-Menendez, Fabricio Miguel, Sandoval-Trigos, Jesus Cesar, Julca-Marcelo, Edson Hilmer, Tuya-Cerna, Bheny Janett, Gutierrez-Gomez, Edgar
Format Journal Article
LanguageEnglish
Published Neutrosophic Sets and Systems 27.12.2023
University of New Mexico
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The extraction of essential oils in the world is widely used to combat various diseases, and also helps for giving a good taste to food (flavoring condiments) and cosmetics that do not pollute the environment or generate chemicals. Peru is in the top 10 countries with the greatest biological diversity in the world, having an approximate 10% of world flora and endless endemic species, also valuing the citrus fruits having productive of orange, lime, grapefruit, tangerine, and tangelo. Therefore, processes are analyzed and a model for the extraction of essential oil from citrus fruits is developed, through the design of an industrial-scale steam extractor, which establishes the automation of the filling and emptying of the distiller to obtain better results and also automates a closed-loop control for refrigeration, to help the operator to control and supervise the process of refrigeration and water filling using a control panel. The distillation process was analyzed where an average of 1% to 5% of essential oil of citrus fruits was obtained and the development of a control for the supervision of the filling and emptying of the water was analyzed. In this paper we introduce a Neutrosophic (Indeterminate) Control System model based on the well-known Fuzzy Control Systems models, especially Mamdani's. It is applied in the process of automating the extraction of essential oil from citrus fruits. An Indeterminate Control System, like its similar Fuzzy Control System, makes it possible to control the oil production process with the help of natural language. The advantage of the Indeterminate Control System is that it explicitly considers indeterminacy due to the non-homogeneity of the parameters within the system, thus it is more accurate. Keywords: Steam Traction, Essential oils, Automation, Essential oil distillation machine, Programmable Logic Control (PLC), Indeterminate Control System, Mamdani`s Control System, Neutrosophic Number.
ISSN:2331-6055
2331-608X
DOI:10.5281/zenodo.10436567