CO2-assisted formation of grain boundaries for efficient CO–CO coupling on a derived Cu catalyst
The electrochemical CO2 reduction reaction (CO2RR) on Cu catalyst holds great promise for converting CO2 into valuable multicarbon (C2+) compounds, but still suffers poor selectivity due to the sluggish kinetics of forming carbon–carbon (C–C) bonds. Here we reported a perovskite oxide-derived Cu cat...
Saved in:
Published in | National Science Open Vol. 2; no. 2 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
EDP Sciences
01.03.2023
Science Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The electrochemical CO2 reduction reaction (CO2RR) on Cu catalyst holds great promise for converting CO2 into valuable multicarbon (C2+) compounds, but still suffers poor selectivity due to the sluggish kinetics of forming carbon–carbon (C–C) bonds. Here we reported a perovskite oxide-derived Cu catalyst with abundant grain boundaries for efficient C–C coupling. These grain boundaries are readily created from the structural reconstruction induced by CO2-assisted La leaching. Using this defective catalyst, we achieved a maximum C2+ Faradaic efficiency of 80.3% with partial current density over 400 mA cm−2 in neutral electrolyte in a flow-cell electrolyzer. By combining the structural and spectroscopic investigations, we uncovered that the in-situ generated defective sites trapped by grain boundaries enable favorable CO adsorption and thus promote C–C coupling kinetics for C2+ products formation. This work showcases the great potential of perovskite materials for efficient production of valuable multicarbon compounds via CO2RR electrochemistry. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2097-1168 2097-1400 |
DOI: | 10.1360/nso/20220044 |