OH and HO2 radical chemistry at a suburban site during the EXPLORE-YRD campaign in 2018

The first OH and HO2 radical observation in Yangtze River Delta, one of the four major urban agglomerations in China, was carried out at a suburban site (Taizhou) in summer 2018 from May to June, aiming to elucidate the atmospheric oxidation capacity in this region. The maximum diurnal averaged OH a...

Full description

Saved in:
Bibliographic Details
Published inAtmospheric chemistry and physics Vol. 22; no. 10; pp. 7005 - 7028
Main Authors Ma, Xuefei, Tan, Zhaofeng, Lu, Keding, Yang, Xinping, Chen, Xiaorui, Wang, Haichao, Chen, Shiyi, Fang, Xin, Li, Shule, Li, Xin, Liu, Jingwei, Liu, Ying, Shengrong Lou, Qiu, Wanyi, Wang, Hongli, Zeng, Limin, Zhang, Yuanhang
Format Journal Article
LanguageEnglish
Published Katlenburg-Lindau Copernicus GmbH 31.05.2022
Copernicus Publications
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The first OH and HO2 radical observation in Yangtze River Delta, one of the four major urban agglomerations in China, was carried out at a suburban site (Taizhou) in summer 2018 from May to June, aiming to elucidate the atmospheric oxidation capacity in this region. The maximum diurnal averaged OH and HO2 concentrations were 1.0×107 and1.1×109 cm-3, respectively, which were the second highest HOx (sum of OH and HO2) radical concentrations observed in China. HONO photolysis was the dominant radical primary source, accounting for 42 % of the total radical initiation rate. Other contributions were from carbonyl photolysis (including HCHO, 24 %), O3 photolysis (17 %), alkene ozonolysis (14 %), and NO3 oxidation (3 %). A chemical box model based on the RACM2-LIM1 mechanism could generally reproduce the observed HOx radicals, but systematic discrepancy remained in the afternoon for the OH radical, when the NO mixing ratio was less than 0.3 ppb. An additional recycling mechanism equivalent to 100 ppt NO was capable to fill the gap. The sum of monoterpenes was on average up to 0.4 ppb during daytime, which was all allocated to α-pinene in the base model. A sensitivity test without monoterpene input showed the modeled OH and HO2 concentrations would increase by 7 % and 4 %, respectively, but modeled RO2 concentration would significantly decrease by 23 %, indicating that monoterpene was an important precursor of RO2 radicals in this study. Consequently, the daily integrated net ozone production would reduce by 6.3 ppb without monoterpene input, proving the significant role of monoterpene in the photochemical O3 production in this study. In addition, the generally good agreement between observed and modeled HOx concentrations suggested no significant HO2 heterogeneous uptake process during this campaign. Incorporation of HO2 heterogeneous uptake process would worsen the agreement between HOx radical observation and simulation, and the discrepancy would be beyond the combined measurement–model uncertainties using an effective uptake coefficient of 0.2. Finally, the ozone production efficiency (OPE) was only 1.7 in this study, a few folds lower than other studies in (sub)urban environments. The low OPE indicated a slow radical propagation rate and short chain length. As a consequence, ozone formation was suppressed by the low NO concentration in this study.
ISSN:1680-7316
1680-7324
DOI:10.5194/acp-22-7005-2022