Calculation of hydraulic resistances of a submerged vibrating confuser of an electromagnetic vibrator

The relevance of the discussed issue is caused by the necessity to develop energy-efficient vibrating equipment for oil treatment to transportation. Vibration techniques can significantly improve the performance of the oil equipment in its desalting, dewatering, viscosity reduction and hysteretic he...

Full description

Saved in:
Bibliographic Details
Published inIzvestiâ Tomskogo politehničeskogo universiteta. Inžiniring georesursov Vol. 328; no. 2
Main Authors Anton Vladimirovich Azin, Evgeny Petrovich Bogdanov, Sergey Vladimirovich Ponomarev, Sergey Vladimirovich Rikkonen
Format Journal Article
LanguageRussian
Published Tomsk Polytechnic University 01.09.2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The relevance of the discussed issue is caused by the necessity to develop energy-efficient vibrating equipment for oil treatment to transportation. Vibration techniques can significantly improve the performance of the oil equipment in its desalting, dewatering, viscosity reduction and hysteretic heating. Energy efficiency of application of vibrating processing consists in the fact that the use of energy-intensive thermal methods of oil processing is excluded. There are no theoretical and engineering methods of calculation of vibrating submerged cofusers in a continuous liquid medium. The vibrating confuser submerged in a continuous body is a nonlinear oscillatory system; it is difficult to calculate such systems. The construction of such vibrating equipment is associated with the development of original methods for determining hydraulic resistance of submerged vibrating confusers operating close to the fixed surface. The issue is intended for engineers-developers of oil equipment. The main aim of the study is to develop the methods of calculating the hydraulic resistances in conditions of stream forming of fluid in the vibrating confuser; to determine the resistance force to the submerged confuser movment in conditions of variable geometric sizes of hydraulic system. Confuser works in non-Newtonian fluids. Research methods. The main method of investigation is mathematical modeling of a nonlinear vibrating system of submerged vibrating confuser with variable geometrical sizes of the hydraulic system. Results. The authors found out the new engineering method for determining hydraulic resistances of a submerged vibrating confuser of the electromagnetic vibrator and the hydraulic force of initiation of submerged jet in stationary environment. The authors calculated the forces of hydraulic resistances of movable and stationary confusers of electromagnetic vibrator and analyzed the resistance forces of friction, frontal resistances and local hydraulic resistances of the confuser of the electromagnetic vibrator.
ISSN:2500-1019
2413-1830