Daily soil moisture prediction during winter wheat growth season using an SCSSA-CNN-BiLSTM model

【Objective】Accurate prediction of field soil moisture is crucial for managing agricultural production and water-saving irrigation. This paper proposes a new method to predict soil moisture changes.【Method】The hybrid deep learning model, SCSSA-CNN-BiLSTM, was integrated with Sine Cosine Cauchy Sparro...

Full description

Saved in:
Bibliographic Details
Published inGuanʻgai paishui xuebao Vol. 44; no. 8; pp. 1 - 8
Main Authors CUI Song, WU Jin, ZHANG Naifeng, LIU Meng, HU Yongsheng, HE Yanan, GU Yue, LONG Xinya, WANG Zhenlong
Format Journal Article
LanguageChinese
Published Science Press 01.08.2025
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:【Objective】Accurate prediction of field soil moisture is crucial for managing agricultural production and water-saving irrigation. This paper proposes a new method to predict soil moisture changes.【Method】The hybrid deep learning model, SCSSA-CNN-BiLSTM, was integrated with Sine Cosine Cauchy Sparrow Search Algorithm (SCSSA) for hyperparameter optimization. It was then combined with Convolutional Neural Networks (CNN) for spatial feature extraction and Bidirectional Long Short-Term Memory (BiLSTM) networks for temporal sequence learning. The model was trained using meteorological data and soil moisture measured at three depths - 10, 30 and 50 cm - at the Wudaogou Experimental Station between October 2022 and June 2023. It was then used to predict soil moisture in the 0-20 cm root zone during the winter wheat growing season.【Result】① The optimized model accurately captured the spatiotemporal variation in soil moisture, with the SCSSA enhancement reducing RMSE by 44.5% from 1.394 to 0.774. ② The proposed model
ISSN:1672-3317
DOI:10.13522/j.cnki.ggps.2025183