Pale-green phenotype of atl31atl6 double mutant leaves is caused by disruption of 5-aminolevulinic acid biosynthesis in Arabidopsis thaliana

Arabidopsis ubiquitin ligases ATL31 and homologue ATL6 control the carbon/nitrogen nutrient and pathogen responses. A mutant with the loss-of-function of both atl31 and atl6 developed light intensity-dependent pale-green true leaves, whereas the single knockout mutants did not. Plastid ultrastructur...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 10; no. 2; p. e0117662
Main Authors Maekawa, Shugo, Takabayashi, Atsushi, Huarancca Reyes, Thais, Yamamoto, Hiroko, Tanaka, Ayumi, Sato, Takeo, Yamaguchi, Junji
Format Journal Article
LanguageEnglish
Published United States Public Library of Science (PLoS) 2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Arabidopsis ubiquitin ligases ATL31 and homologue ATL6 control the carbon/nitrogen nutrient and pathogen responses. A mutant with the loss-of-function of both atl31 and atl6 developed light intensity-dependent pale-green true leaves, whereas the single knockout mutants did not. Plastid ultrastructure and Blue Native-PAGE analyses revealed that pale-green leaves contain abnormal plastid structure with highly reduced levels of thylakoid proteins. In contrast, the pale-green leaves of the atl31/atl6 mutant showed normal Fv/Fm. In the pale-green leaves of the atl31/atl6, the expression of HEMA1, which encodes the key enzyme for 5-aminolevulinic acid synthesis, the rate-limiting step in chlorophyll biosynthesis, was markedly down-regulated. The expression of key transcription factor GLK1, which directly promotes HEMA1 transcription, was also significantly decreased in atl31/atl6 mutant. Finally, application of 5-aminolevulinic acid to the atl31/atl6 mutants resulted in recovery to a green phenotype. Taken together, these findings indicate that the 5-aminolevulinic acid biosynthesis step was inhibited through the down-regulation of chlorophyll biosynthesis-related genes in the pale-green leaves of atl31/atl6 mutant.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1932-6203
DOI:10.1371/journal.pone.0117662